#!/usr/bin/env python3

"""
Zoom in on video motion.
"""

import pyffstream
import numpy as np
import PIL.Image
import cv2
import scipy.signal


def args_pre(parser):
    # Add arguments.
    parser.add_argument(
        '--margins', metavar=('L', 'R', 'T', 'B'), type=float, nargs=4,
        default=[0, 0, 0, 0],
        help="""
        margins (left, right, top, bottom, in percent) of output video
        (default: %(default)s)
        """)
    parser.add_argument(
        '--blur-factor', metavar='F', type=float, default=0.05,
        help="blur size factor (default: %(default)s)")
    parser.add_argument(
        '--blur-threshold', metavar='T', type=int, default=32,
        help="blur threshold (default: %(default)s)")
    parser.add_argument(
        '--lowpass-factor', metavar='F', type=float, default=0.00015,
        help="low-pass filter cutoff frequency factor (default: %(default)s)")


def init(args):
    # Set arguments.
    args.history = int(30 * args.output_fps)
    args.blur_size = (
        int(np.ceil(args.working_width * args.blur_factor)) // 2 * 2 + 1
    )
    args.lost_size = args.working_width * args.working_height * 0.001
    args.b, args.a = scipy.signal.butter(
        1, args.working_width / args.output_fps * args.lowpass_factor
    )
    args.history_track_ratio = 0.025
    args.resample_ratios = [
        # (1.0, PIL.Image.NEAREST),
        (0.5, PIL.Image.BILINEAR),
        (0.2, PIL.Image.BICUBIC),
        (0.0, PIL.Image.LANCZOS),
    ]

    # Set state.
    class State:
        pass
    state = State()
    state.background_subtractor = cv2.createBackgroundSubtractorMOG2(
        history=args.history
    )
    state.filter_state = []
    return state


def process(args, state, frame, frame_num):
    # Create debug frame.
    if args.debug:
        debug_frame = frame.copy()
    else:
        debug_frame = None

    # Subtract background, blur and threshold.
    foreground = state.background_subtractor.apply(frame)
    mask = cv2.compare(
        cv2.GaussianBlur(foreground, (args.blur_size, args.blur_size), 0),
        args.blur_threshold,
        cv2.CMP_GE,
    )
    if args.debug:
        debug_frame[mask > 0] = (0, 255, 0)
        debug_frame[foreground > 0] = (255, 0, 0)

    # Nothing interesting?
    if np.count_nonzero(mask) < args.lost_size:
        # Reset rectangle.
        x, y, w, h = 0, 0, args.working_width, args.working_height
    else:
        # Find bounding rectangle.
        x, y, w, h = cv2.boundingRect(mask)
    if args.debug:
        cv2.rectangle(
            debug_frame, (x, y), (x+w, y+h), (0, 255, 0), 2 * args.thickness
        )

    # Add rectangle margins.
    ml, mr, mt, mb = args.margins
    m = max(w, h)
    x = max(x - int(m * ml / 100), 0)
    y = max(y - int(m * mt / 100), 0)
    w = min(w + int(m * (ml+mr) / 100), args.working_width - x)
    h = min(h + int(m * (mt+mb) / 100), args.working_height - y)
    if args.debug:
        cv2.rectangle(
            debug_frame, (x, y), (x+w, y+h), (0, 0, 255), 2 * args.thickness
        )

    # Filter rectangle.
    x1, y1, x2, y2 = x, y, x+w, y+h
    if frame_num == args.start_frame:
        state.filter_state = [
            coord * scipy.signal.lfilter_zi(args.b, args.a)
            for coord in (x1, y1, x2, y2)
        ]
    (x1, y1, x2, y2), filter_state_next = zip(*(
        scipy.signal.lfilter(args.b, args.a, [coord], zi=zi)
        for coord, zi in
        zip((x1, y1, x2, y2), state.filter_state)
    ))
    if frame_num >= args.start_frame + args.history * args.history_track_ratio:
        state.filter_state = filter_state_next
    x1, y1, x2, y2 = [int(coord[0]) for coord in (x1, y1, x2, y2)]
    x, y, w, h = x1, y1, x2-x1, y2-y1
    if args.debug:
        cv2.rectangle(
            debug_frame, (x, y), (x+w, y+h), (255, 0, 255), 2 * args.thickness
        )

    # Fix rectangle.
    x, y, w, h = pyffstream.fix_rect(args, x, y, w, h)

    # Determine resampling method.
    for i, (ratio, resample) in enumerate(args.resample_ratios):
        if min(w / args.output_width, h / args.output_height) >= ratio:
            break
    if args.debug:
        color_coeff = i / max(1, len(args.resample_ratios) - 1)
        color = (
            255 * (0 + color_coeff),
            255 * (1 - color_coeff),
            0,
        )
        cv2.rectangle(
            debug_frame, (x, y), (x+w, y+h), color, 2 * args.thickness,
        )

    # Cut and resize.
    output_frame = pyffstream.resize(
        frame[y:y+h, x:x+w], args.output_width, args.output_height, resample
    )

    # Return.
    return output_frame, debug_frame


def main():
    pyffstream.run(__doc__, process, init, args_pre)


if __name__ == '__main__':
    main()