2a5c1078 |
#!/usr/bin/env python3
"""
Zoom in on video motion.
"""
import pyffstream
import numpy as np
import PIL.Image
import cv2
import scipy.signal
def args_pre(parser):
# Add arguments.
parser.add_argument(
'--margins', metavar=('L', 'R', 'T', 'B'), type=float, nargs=4,
default=[0, 0, 0, 0],
help="""
margins (left, right, top, bottom, in percent) of output video
(default: %(default)s)
""")
parser.add_argument(
'--blur-factor', metavar='F', type=float, default=0.05,
help="blur size factor (default: %(default)s)")
parser.add_argument(
'--blur-threshold', metavar='T', type=int, default=32,
help="blur threshold (default: %(default)s)")
parser.add_argument(
'--lowpass-factor', metavar='F', type=float, default=0.00015,
help="low-pass filter cutoff frequency factor (default: %(default)s)")
def init(args):
# Set arguments.
args.history = int(30 * args.output_fps)
args.blur_size = (
int(np.ceil(args.working_width * args.blur_factor)) // 2 * 2 + 1
)
args.lost_size = args.working_width * args.working_height * 0.001
args.b, args.a = scipy.signal.butter(
1, args.working_width / args.output_fps * args.lowpass_factor
)
args.history_track_ratio = 0.025
args.resample_ratios = [
# (1.0, PIL.Image.NEAREST),
(0.5, PIL.Image.BILINEAR),
(0.2, PIL.Image.BICUBIC),
(0.0, PIL.Image.LANCZOS),
]
# Set state.
class State:
pass
state = State()
state.background_subtractor = cv2.createBackgroundSubtractorMOG2(
history=args.history
)
state.filter_state = []
return state
def process(args, state, frame, frame_num):
# Create debug frame.
if args.debug:
debug_frame = frame.copy()
else:
debug_frame = None
# Subtract background, blur and threshold.
foreground = state.background_subtractor.apply(frame)
mask = cv2.compare(
cv2.GaussianBlur(foreground, (args.blur_size, args.blur_size), 0),
args.blur_threshold,
cv2.CMP_GE,
)
if args.debug:
debug_frame[mask > 0] = (0, 255, 0)
debug_frame[foreground > 0] = (255, 0, 0)
# Nothing interesting?
if np.count_nonzero(mask) < args.lost_size:
# Reset rectangle.
x, y, w, h = 0, 0, args.working_width, args.working_height
else:
# Find bounding rectangle.
x, y, w, h = cv2.boundingRect(mask)
if args.debug:
cv2.rectangle(
debug_frame, (x, y), (x+w, y+h), (0, 255, 0), 2 * args.thickness
)
# Add rectangle margins.
ml, mr, mt, mb = args.margins
m = max(w, h)
x = max(x - int(m * ml / 100), 0)
y = max(y - int(m * mt / 100), 0)
w = min(w + int(m * (ml+mr) / 100), args.working_width - x)
h = min(h + int(m * (mt+mb) / 100), args.working_height - y)
if args.debug:
cv2.rectangle(
debug_frame, (x, y), (x+w, y+h), (0, 0, 255), 2 * args.thickness
)
# Filter rectangle.
x1, y1, x2, y2 = x, y, x+w, y+h
if frame_num == args.start_frame:
state.filter_state = [
coord * scipy.signal.lfilter_zi(args.b, args.a)
for coord in (x1, y1, x2, y2)
]
(x1, y1, x2, y2), filter_state_next = zip(*(
scipy.signal.lfilter(args.b, args.a, [coord], zi=zi)
for coord, zi in
zip((x1, y1, x2, y2), state.filter_state)
))
if frame_num >= args.start_frame + args.history * args.history_track_ratio:
state.filter_state = filter_state_next
x1, y1, x2, y2 = [int(coord[0]) for coord in (x1, y1, x2, y2)]
x, y, w, h = x1, y1, x2-x1, y2-y1
if args.debug:
cv2.rectangle(
debug_frame, (x, y), (x+w, y+h), (255, 0, 255), 2 * args.thickness
)
# Fix rectangle.
x, y, w, h = pyffstream.fix_rect(args, x, y, w, h)
# Determine resampling method.
for i, (ratio, resample) in enumerate(args.resample_ratios):
if min(w / args.output_width, h / args.output_height) >= ratio:
break
if args.debug:
color_coeff = i / max(1, len(args.resample_ratios) - 1)
color = (
255 * (0 + color_coeff),
255 * (1 - color_coeff),
0,
)
cv2.rectangle(
debug_frame, (x, y), (x+w, y+h), color, 2 * args.thickness,
)
# Cut and resize.
output_frame = pyffstream.resize(
frame[y:y+h, x:x+w], args.output_width, args.output_height, resample
)
# Return.
return output_frame, debug_frame
def main():
pyffstream.run(__doc__, process, init, args_pre)
if __name__ == '__main__':
main()
|