1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,31 @@ |
1 |
+/* |
|
2 |
+ * The transitive 6-net, also known as Heawood's graph, |
|
3 |
+ * can be used to test the "stability points" of the layout |
|
4 |
+ * algorithm. |
|
5 |
+ |
|
6 |
+ * The "ideal" layout occurs when len="2.5". The layout |
|
7 |
+ * loses the regularity when smaller values are used. |
|
8 |
+ */ |
|
9 |
+graph "Heawood" { |
|
10 |
+ node [ |
|
11 |
+ fontname = "Arial" |
|
12 |
+ label = "\N" |
|
13 |
+ shape = "circle" |
|
14 |
+ width = "0.50000" |
|
15 |
+ height = "0.500000" |
|
16 |
+ color = "black" |
|
17 |
+ ] |
|
18 |
+ edge [ |
|
19 |
+ color = "black" |
|
20 |
+ ] |
|
21 |
+ /* The outer wheel */ |
|
22 |
+ "0" -- "1" -- "2" -- "3" -- "4" -- "5" -- "6" -- "7" -- "8" -- "9" -- "10" -- "11" -- "12" -- "13" -- "0"; |
|
23 |
+ /* The internal edges. The len = makes them internal */ |
|
24 |
+ "0" -- "5" [len = 2.5]; |
|
25 |
+ "2" -- "7" [len = 2.5]; |
|
26 |
+ "4" -- "9" [len = 2.5]; |
|
27 |
+ "6" -- "11" [len = 2.5]; |
|
28 |
+ "8" -- "13" [len = 2.5]; |
|
29 |
+ "10" -- "1" [len = 2.5]; |
|
30 |
+ "12" -- "3" [len = 2.5]; |
|
31 |
+} |