/// Includes
#include <array>
#include <fstream>
#include <iostream>
#include <limits>
#include <string>
#include <vector>
#define GLM_FORCE_SWIZZLE
#include <glm/glm.hpp>
#include <glm/fwd.hpp>
#include <glm/ext/matrix_transform.hpp> // https://glm.g-truc.net/0.9.9/api/a00247.html
#include <glm/ext/matrix_clip_space.hpp> // https://glm.g-truc.net/0.9.9/api/a00243.html
#include <glm/ext/matrix_projection.hpp> // https://glm.g-truc.net/0.9.9/api/a00245.html
#include <glm/gtc/color_space.hpp> // https://glm.g-truc.net/0.9.9/api/a00289.html
// #include <glm/gtx/io.hpp> // https://glm.g-truc.net/0.9.9/api/a00332.html
/// Namespaces
using namespace glm;
/// Constants
auto const infinity = std::numeric_limits<float>::infinity();
/// Types
//// Ray
struct Ray
{
vec3 origin;
vec3 direction;
};
//// Trace
struct Trace
{
float distance;
};
//// Circle
struct Circle
{
vec3 center;
float radius;
Trace trace(Ray const & ray) const
{
auto const offs = center - ray.origin;
auto const proj = dot(offs, ray.direction);
if (proj < 0.0F) // Past.
return {infinity};
auto const perp2 = dot(offs, offs) - proj * proj;
auto const pene2 = radius * radius - perp2;
if (pene2 < 0.0F) // Miss.
return {infinity};
auto const dist = proj - sqrt(pene2);
if (dist < 0.0F) // Inside.
return {infinity};
return {dist};
}
};
//// Shapes
using Shapes = std::vector<Circle>;
//// Scene
struct Scene
{
Shapes shapes;
Trace trace(Ray const & ray) const
{
auto nearest = Trace{infinity};
for (auto const & shape : shapes)
{
auto const trace = shape.trace(ray);
if (trace.distance < nearest.distance)
nearest = trace;
}
return nearest;
}
};
//// Camera
struct Camera
{
vec3 position;
vec3 target;
float fovy;
float near;
float far;
Ray ray(uvec2 const & size, uvec2 const & pixel) const
{
auto const aspect = (float)size.x / (float)size.y;
auto const viewport = uvec4(0, 0, size);
auto const window = vec3(vec2(pixel) + 0.5F, 0.0F);
auto const up = vec3(0.0F, 1.0F, 0.0F);
auto const view = glm::lookAt(position, target, up);
auto const proj = glm::perspective(fovy, aspect, near, far);
auto const world = glm::unProject(window, view, proj, viewport);
auto const direction = normalize(world.xyz() - position);
return Ray{position, direction};
}
};
//// ACES
struct ACES
{
vec3 whitepoint;
vec3 transform(vec3 color) const
{
color /= whitepoint;
return
(color * (2.51F * color + 0.03F)) /
(color * (2.43F * color + 0.59F) + 0.14F);
}
};
//// TGA
struct TGA
{
uvec2 size;
std::string path;
template<typename ColorFunc>
void render(ColorFunc const & color_func) const
{
auto frame_size = size.x * size.y;
auto frame = std::vector<u8vec4>(frame_size);
auto header = std::array<u8, 18>{
0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,
(u8)(size.x >> 0U),
(u8)(size.x >> 8U),
(u8)(size.y >> 0U),
(u8)(size.y >> 8U),
32, 0,
};
for (auto y = 0U; y < size.y; ++y)
{
for (auto x = 0U; x < size.x; ++x)
{
auto const color = color_func(size, uvec2(x, y));
auto const index = y * size.x + x;
frame[index] = clamp(color.bgra(), 0.0F, 1.0F) * 255.0F + 0.5F;
}
}
auto ostream = std::ofstream(path, std::ios::binary);
write(ostream, header);
write(ostream, frame);
}
template<typename Collection>
void write(std::ostream & ostream, Collection const & collection) const
{
ostream.write(
(char const *)collection.data(),
(std::streamsize)(sizeof(*collection.data()) * collection.size())
);
}
};
/// Main
int main(int argc, char const * argv[])
{
//// Arguments
if (argc != 2)
{
std::cerr << "Usage: raytrace <path>" << std::endl;
return 0;
}
auto const * path = argv[1]; // NOLINT
//// Configure
auto const camera = Camera{
vec3(0.0F, 0.0F, 0.0F), // position
vec3(0.0F, 0.0F, -1.0F), // target
radians(45.0F), // fovy
0.01F, // near
100.0F, // far
};
auto const scene = Scene{
// shapes
{
{vec3( 2.0F, -1.0F, -10.0F), 3.0F},
{vec3( 1.0F, 2.0F, -7.0F), 2.0F},
{vec3(-1.0F, 0.0F, -4.0F), 1.0F},
{vec3( 0.0F, -1.0F, -3.0F), 0.2F},
},
};
auto const tonemap = ACES{vec3(1.0F)};
auto const output = TGA{uvec2(640, 480), path};
//// Render
output.render([&](uvec2 const & size, uvec2 const & pixel) {
auto const ray = camera.ray(size, pixel);
auto const trace = scene.trace(ray);
auto const rgb = vec3(min(trace.distance / 100.0F, 100.0F));
auto const srgb = convertLinearToSRGB(tonemap.transform(rgb));
auto const alpha = 1.0F;
return vec4(srgb, alpha);
});
}