| 1 | 1 |
deleted file mode 100755 |
| ... | ... |
@@ -1,1125 +0,0 @@ |
| 1 |
-// VectorUtils |
|
| 2 |
-// Vector and matrix manipulation library for OpenGL, a package of the most essential functions. |
|
| 3 |
-// Includes: |
|
| 4 |
-// - Basic vector operations: Add, subtract, scale, dot product, cross product. |
|
| 5 |
-// - Basic matrix operations: Multiply matrix to matrix, matric to vector, transpose. |
|
| 6 |
-// - Creation of transformation matrixces: Translation, scaling, rotation. |
|
| 7 |
-// - A few more special operations: Orthonormalizaton of a matrix, CrossMatrix, |
|
| 8 |
-// - Replacements of some GLU functions: lookAt, frustum, perspective. |
|
| 9 |
-// - Inverse and inverse transpose for creating normal matrices. |
|
| 10 |
-// Supports both C and C++. The C interface makes it accessible from most languages if desired. |
|
| 11 |
- |
|
| 12 |
-// A note on completeness: |
|
| 13 |
-// All operations may not be 100% symmetrical over all types, and some GLSL types are |
|
| 14 |
-// missing (like vec2). These will be added if proven important. There is already |
|
| 15 |
-// some calls of minor importance (mat3 * mat3, mat3 * vec3) included only for |
|
| 16 |
-// symmetry. I don't want the code to grow a lot for such reasons, I want it to be |
|
| 17 |
-// compact and to the point. |
|
| 18 |
- |
|
| 19 |
-// Current open design questions: |
|
| 20 |
-// Naming conventions: Lower case or capitalized? (Frustum/frustum) |
|
| 21 |
-// Prefix for function calls? (The cost would be more typing and making the code harder to read.) |
|
| 22 |
-// Add vector operations for vec4? Other *essential* symmetry issues? |
|
| 23 |
-// Names for functions when supporting both vec3 and vec4, mat3 and mat4? (vec3Add, vec4Add?) |
|
| 24 |
- |
|
| 25 |
- |
|
| 26 |
-// History: |
|
| 27 |
- |
|
| 28 |
-// VectorUtils is a small (but growing) math unit by Ingemar Ragnemalm. |
|
| 29 |
-// It originated as "geom3d" by Andrew Meggs, but that unit is no more |
|
| 30 |
-// than inspiration today. The original VectorUtils(1) was based on it, |
|
| 31 |
-// while VectorUtils2 was a rewrite primarily to get rid of the over-use |
|
| 32 |
-// of arrays in the original. |
|
| 33 |
- |
|
| 34 |
-// New version 120201: |
|
| 35 |
-// Defaults to matrices "by the book". Can also be configured to the flipped |
|
| 36 |
-// column-wise matrices that old OpenGL required (and we all hated). |
|
| 37 |
-// This is freshly implemented, limited testing, so there can be bugs. |
|
| 38 |
-// But it seems to work just fine on my tests with translation, rotations |
|
| 39 |
-// and matrix multiplications. |
|
| 40 |
- |
|
| 41 |
-// 1208??: Added lookAt, perspective, frustum |
|
| 42 |
-// Also made Transpose do what it should. TransposeRotation is the old function. |
|
| 43 |
-// 120913: Fixed perspective. Never trust other's code... |
|
| 44 |
-// 120925: Transposing in CrossMatrix |
|
| 45 |
-// 121119: Fixed one more glitch in perspective. |
|
| 46 |
- |
|
| 47 |
-// 130227 First draft to a version 3. |
|
| 48 |
-// C++ operators if accessed from C++ |
|
| 49 |
-// Vectors by value when possible. Return values on the stack. |
|
| 50 |
-// (Why was this not the case in VectorUtils2? Beause I tried to stay compatible |
|
| 51 |
-// with an old C compiler. Older C code generally prefers all non-scalar data by |
|
| 52 |
-// reference. But I'd like to move away from that now.) |
|
| 53 |
-// Types conform with GLSL as much as possible (vec3, mat4) |
|
| 54 |
-// Added some operations for mat3 and vec4, but most of them are more for |
|
| 55 |
-// completeness than usefulness; I find vec3's and mat4's to be what I use |
|
| 56 |
-// most of the time. |
|
| 57 |
-// Also added InvertMat3 and InversTranspose to support creation of normal matrices. |
|
| 58 |
-// Marked some calls for removal: CopyVector, TransposeRotation, CopyMatrix. |
|
| 59 |
-// 130308: Added InvertMat4 and some more vec3/vec4 operators (+= etc) |
|
| 60 |
-// 130922: Fixed a vital bug in CrossMatrix. |
|
| 61 |
-// 130924: Fixed a bug in mat3tomat4. |
|
| 62 |
-// 131014: Added TransposeMat3 (although I doubt its importance) |
|
| 63 |
-// 140213: Corrected mat3tomat4. (Were did the correction in 130924 go?) |
|
| 64 |
-// 151210: Added printMat4 and printVec3. |
|
| 65 |
-// 160302: Added empty constructors for vec3 and vec4. |
|
| 66 |
-// 170221: Uses _WIN32 instead of WIN32 |
|
| 67 |
-// 170331: Added stdio.h for printMat4 and printVec3 |
|
| 68 |
-// 180314: Added some #defines for moving closer to GLSL (dot, cross...). |
|
| 69 |
-// 2021-05-15: Constructiors for vec3 etc replaced in order to avoid |
|
| 70 |
-// problems with some C++ compilers. |
|
| 71 |
-// 2022-05-14: Corrected transposed version of lookAtv. |
|
| 72 |
-// 2023-01-31: Added shader upload utility functions. |
|
| 73 |
- |
|
| 74 |
-// You may use VectorUtils as you please. A reference to the origin is appreciated |
|
| 75 |
-// but if you grab some snippets from it without reference... no problem. |
|
| 76 |
- |
|
| 77 |
- |
|
| 78 |
-#include "VectorUtils3.h" |
|
| 79 |
- |
|
| 80 |
-// VS doesn't define NAN properly |
|
| 81 |
-#ifdef _WIN32 |
|
| 82 |
- #ifndef NAN |
|
| 83 |
- static const unsigned long __nan[2] = {0xffffffff, 0x7fffffff};
|
|
| 84 |
- #define NAN (*(const float *) __nan) |
|
| 85 |
- #endif |
|
| 86 |
-#endif |
|
| 87 |
- |
|
| 88 |
-char transposed = 0; |
|
| 89 |
- |
|
| 90 |
- vec3 SetVector(GLfloat x, GLfloat y, GLfloat z) |
|
| 91 |
- {
|
|
| 92 |
- vec3 v; |
|
| 93 |
- |
|
| 94 |
- v.x = x; |
|
| 95 |
- v.y = y; |
|
| 96 |
- v.z = z; |
|
| 97 |
- return v; |
|
| 98 |
- } |
|
| 99 |
- |
|
| 100 |
-// New better name |
|
| 101 |
- vec2 SetVec2(GLfloat x, GLfloat y) |
|
| 102 |
- {
|
|
| 103 |
- vec2 v; |
|
| 104 |
- |
|
| 105 |
- v.x = x; |
|
| 106 |
- v.y = y; |
|
| 107 |
- return v; |
|
| 108 |
- } |
|
| 109 |
- |
|
| 110 |
- vec3 SetVec3(GLfloat x, GLfloat y, GLfloat z) |
|
| 111 |
- {
|
|
| 112 |
- vec3 v; |
|
| 113 |
- |
|
| 114 |
- v.x = x; |
|
| 115 |
- v.y = y; |
|
| 116 |
- v.z = z; |
|
| 117 |
- return v; |
|
| 118 |
- } |
|
| 119 |
- |
|
| 120 |
- vec4 SetVec4(GLfloat x, GLfloat y, GLfloat z, GLfloat w) |
|
| 121 |
- {
|
|
| 122 |
- vec4 v; |
|
| 123 |
- |
|
| 124 |
- v.x = x; |
|
| 125 |
- v.y = y; |
|
| 126 |
- v.z = z; |
|
| 127 |
- v.w = w; |
|
| 128 |
- return v; |
|
| 129 |
- } |
|
| 130 |
- |
|
| 131 |
-// Modern C doesn't need this, but Visual Studio insists on old-fashioned C and needs this. |
|
| 132 |
- mat3 SetMat3(GLfloat p0, GLfloat p1, GLfloat p2, GLfloat p3, GLfloat p4, GLfloat p5, GLfloat p6, GLfloat p7, GLfloat p8) |
|
| 133 |
- {
|
|
| 134 |
- mat3 m; |
|
| 135 |
- m.m[0] = p0; |
|
| 136 |
- m.m[1] = p1; |
|
| 137 |
- m.m[2] = p2; |
|
| 138 |
- m.m[3] = p3; |
|
| 139 |
- m.m[4] = p4; |
|
| 140 |
- m.m[5] = p5; |
|
| 141 |
- m.m[6] = p6; |
|
| 142 |
- m.m[7] = p7; |
|
| 143 |
- m.m[8] = p8; |
|
| 144 |
- return m; |
|
| 145 |
- } |
|
| 146 |
- |
|
| 147 |
-// Like above; Modern C doesn't need this, but Visual Studio insists on old-fashioned C and needs this. |
|
| 148 |
- mat4 SetMat4(GLfloat p0, GLfloat p1, GLfloat p2, GLfloat p3, |
|
| 149 |
- GLfloat p4, GLfloat p5, GLfloat p6, GLfloat p7, |
|
| 150 |
- GLfloat p8, GLfloat p9, GLfloat p10, GLfloat p11, |
|
| 151 |
- GLfloat p12, GLfloat p13, GLfloat p14, GLfloat p15 |
|
| 152 |
- ) |
|
| 153 |
- {
|
|
| 154 |
- mat4 m; |
|
| 155 |
- m.m[0] = p0; |
|
| 156 |
- m.m[1] = p1; |
|
| 157 |
- m.m[2] = p2; |
|
| 158 |
- m.m[3] = p3; |
|
| 159 |
- m.m[4] = p4; |
|
| 160 |
- m.m[5] = p5; |
|
| 161 |
- m.m[6] = p6; |
|
| 162 |
- m.m[7] = p7; |
|
| 163 |
- m.m[8] = p8; |
|
| 164 |
- m.m[9] = p9; |
|
| 165 |
- m.m[10] = p10; |
|
| 166 |
- m.m[11] = p11; |
|
| 167 |
- m.m[12] = p12; |
|
| 168 |
- m.m[13] = p13; |
|
| 169 |
- m.m[14] = p14; |
|
| 170 |
- m.m[15] = p15; |
|
| 171 |
- return m; |
|
| 172 |
- } |
|
| 173 |
- |
|
| 174 |
- |
|
| 175 |
- // vec3 operations |
|
| 176 |
- // vec4 operations can easily be added but I havn't seen much need for them. |
|
| 177 |
- // Some are defined as C++ operators though. |
|
| 178 |
- |
|
| 179 |
- vec3 VectorSub(vec3 a, vec3 b) |
|
| 180 |
- {
|
|
| 181 |
- vec3 result; |
|
| 182 |
- |
|
| 183 |
- result.x = a.x - b.x; |
|
| 184 |
- result.y = a.y - b.y; |
|
| 185 |
- result.z = a.z - b.z; |
|
| 186 |
- return result; |
|
| 187 |
- } |
|
| 188 |
- |
|
| 189 |
- vec3 VectorAdd(vec3 a, vec3 b) |
|
| 190 |
- {
|
|
| 191 |
- vec3 result; |
|
| 192 |
- |
|
| 193 |
- result.x = a.x + b.x; |
|
| 194 |
- result.y = a.y + b.y; |
|
| 195 |
- result.z = a.z + b.z; |
|
| 196 |
- return result; |
|
| 197 |
- } |
|
| 198 |
- |
|
| 199 |
- vec3 CrossProduct(vec3 a, vec3 b) |
|
| 200 |
- {
|
|
| 201 |
- vec3 result; |
|
| 202 |
- |
|
| 203 |
- result.x = a.y*b.z - a.z*b.y; |
|
| 204 |
- result.y = a.z*b.x - a.x*b.z; |
|
| 205 |
- result.z = a.x*b.y - a.y*b.x; |
|
| 206 |
- |
|
| 207 |
- return result; |
|
| 208 |
- } |
|
| 209 |
- |
|
| 210 |
- GLfloat DotProduct(vec3 a, vec3 b) |
|
| 211 |
- {
|
|
| 212 |
- return a.x * b.x + a.y * b.y + a.z * b.z; |
|
| 213 |
- } |
|
| 214 |
- |
|
| 215 |
- vec3 ScalarMult(vec3 a, GLfloat s) |
|
| 216 |
- {
|
|
| 217 |
- vec3 result; |
|
| 218 |
- |
|
| 219 |
- result.x = a.x * s; |
|
| 220 |
- result.y = a.y * s; |
|
| 221 |
- result.z = a.z * s; |
|
| 222 |
- |
|
| 223 |
- return result; |
|
| 224 |
- } |
|
| 225 |
- |
|
| 226 |
- GLfloat Norm(vec3 a) |
|
| 227 |
- {
|
|
| 228 |
- GLfloat result; |
|
| 229 |
- |
|
| 230 |
- result = (GLfloat)sqrt(a.x * a.x + a.y * a.y + a.z * a.z); |
|
| 231 |
- return result; |
|
| 232 |
- } |
|
| 233 |
- |
|
| 234 |
- vec3 Normalize(vec3 a) |
|
| 235 |
- {
|
|
| 236 |
- GLfloat norm; |
|
| 237 |
- vec3 result; |
|
| 238 |
- |
|
| 239 |
- norm = (GLfloat)sqrt(a.x * a.x + a.y * a.y + a.z * a.z); |
|
| 240 |
- result.x = a.x / norm; |
|
| 241 |
- result.y = a.y / norm; |
|
| 242 |
- result.z = a.z / norm; |
|
| 243 |
- return result; |
|
| 244 |
- } |
|
| 245 |
- |
|
| 246 |
- vec3 CalcNormalVector(vec3 a, vec3 b, vec3 c) |
|
| 247 |
- {
|
|
| 248 |
- vec3 n; |
|
| 249 |
- |
|
| 250 |
- n = CrossProduct(VectorSub(a, b), VectorSub(a, c)); |
|
| 251 |
- n = ScalarMult(n, 1/Norm(n)); |
|
| 252 |
- |
|
| 253 |
- return n; |
|
| 254 |
- } |
|
| 255 |
- |
|
| 256 |
-// Splits v into vn (parallell to n) and vp (perpendicular). Does not demand n to be normalized. |
|
| 257 |
- void SplitVector(vec3 v, vec3 n, vec3 *vn, vec3 *vp) |
|
| 258 |
- {
|
|
| 259 |
- GLfloat nlen; |
|
| 260 |
- GLfloat nlen2; |
|
| 261 |
- |
|
| 262 |
- nlen = DotProduct(v, n); |
|
| 263 |
- nlen2 = n.x*n.x+n.y*n.y+n.z*n.z; // Squared length |
|
| 264 |
- if (nlen2 == 0) |
|
| 265 |
- {
|
|
| 266 |
- *vp = v; |
|
| 267 |
- *vn = SetVector(0, 0, 0); |
|
| 268 |
- } |
|
| 269 |
- else |
|
| 270 |
- {
|
|
| 271 |
- *vn = ScalarMult(n, nlen/nlen2); |
|
| 272 |
- *vp = VectorSub(v, *vn); |
|
| 273 |
- } |
|
| 274 |
- } |
|
| 275 |
- |
|
| 276 |
-// Matrix operations primarily on 4x4 matrixes! |
|
| 277 |
-// Row-wise by default but can be configured to column-wise (see SetTransposed) |
|
| 278 |
- |
|
| 279 |
- mat4 IdentityMatrix() |
|
| 280 |
- {
|
|
| 281 |
- mat4 m; |
|
| 282 |
- int i; |
|
| 283 |
- |
|
| 284 |
- for (i = 0; i <= 15; i++) |
|
| 285 |
- m.m[i] = 0; |
|
| 286 |
- for (i = 0; i <= 3; i++) |
|
| 287 |
- m.m[i * 5] = 1; // 0,5,10,15 |
|
| 288 |
- return m; |
|
| 289 |
- } |
|
| 290 |
- |
|
| 291 |
- mat4 Rx(GLfloat a) |
|
| 292 |
- {
|
|
| 293 |
- mat4 m; |
|
| 294 |
- m = IdentityMatrix(); |
|
| 295 |
- m.m[5] = (GLfloat)cos(a); |
|
| 296 |
- if (transposed) |
|
| 297 |
- m.m[9] = (GLfloat)-sin(a); |
|
| 298 |
- else |
|
| 299 |
- m.m[9] = (GLfloat)sin(a); |
|
| 300 |
- m.m[6] = -m.m[9]; //sin(a); |
|
| 301 |
- m.m[10] = m.m[5]; //cos(a); |
|
| 302 |
- return m; |
|
| 303 |
- } |
|
| 304 |
- |
|
| 305 |
- mat4 Ry(GLfloat a) |
|
| 306 |
- {
|
|
| 307 |
- mat4 m; |
|
| 308 |
- m = IdentityMatrix(); |
|
| 309 |
- m.m[0] = (GLfloat)cos(a); |
|
| 310 |
- if (transposed) |
|
| 311 |
- m.m[8] = (GLfloat)sin(a); // Was flipped |
|
| 312 |
- else |
|
| 313 |
- m.m[8] = (GLfloat)-sin(a); |
|
| 314 |
- m.m[2] = -m.m[8]; //sin(a); |
|
| 315 |
- m.m[10] = m.m[0]; //cos(a); |
|
| 316 |
- return m; |
|
| 317 |
- } |
|
| 318 |
- |
|
| 319 |
- mat4 Rz(GLfloat a) |
|
| 320 |
- {
|
|
| 321 |
- mat4 m; |
|
| 322 |
- m = IdentityMatrix(); |
|
| 323 |
- m.m[0] = (GLfloat)cos(a); |
|
| 324 |
- if (transposed) |
|
| 325 |
- m.m[4] = (GLfloat)-sin(a); |
|
| 326 |
- else |
|
| 327 |
- m.m[4] = (GLfloat)sin(a); |
|
| 328 |
- m.m[1] = -m.m[4]; //sin(a); |
|
| 329 |
- m.m[5] = m.m[0]; //cos(a); |
|
| 330 |
- return m; |
|
| 331 |
- } |
|
| 332 |
- |
|
| 333 |
- mat4 T(GLfloat tx, GLfloat ty, GLfloat tz) |
|
| 334 |
- {
|
|
| 335 |
- mat4 m; |
|
| 336 |
- m = IdentityMatrix(); |
|
| 337 |
- if (transposed) |
|
| 338 |
- {
|
|
| 339 |
- m.m[12] = tx; |
|
| 340 |
- m.m[13] = ty; |
|
| 341 |
- m.m[14] = tz; |
|
| 342 |
- } |
|
| 343 |
- else |
|
| 344 |
- {
|
|
| 345 |
- m.m[3] = tx; |
|
| 346 |
- m.m[7] = ty; |
|
| 347 |
- m.m[11] = tz; |
|
| 348 |
- } |
|
| 349 |
- return m; |
|
| 350 |
- } |
|
| 351 |
- |
|
| 352 |
- mat4 S(GLfloat sx, GLfloat sy, GLfloat sz) |
|
| 353 |
- {
|
|
| 354 |
- mat4 m; |
|
| 355 |
- m = IdentityMatrix(); |
|
| 356 |
- m.m[0] = sx; |
|
| 357 |
- m.m[5] = sy; |
|
| 358 |
- m.m[10] = sz; |
|
| 359 |
- return m; |
|
| 360 |
- } |
|
| 361 |
- |
|
| 362 |
- mat4 Mult(mat4 a, mat4 b) // m = a * b |
|
| 363 |
- {
|
|
| 364 |
- mat4 m; |
|
| 365 |
- |
|
| 366 |
- int x, y; |
|
| 367 |
- for (x = 0; x <= 3; x++) |
|
| 368 |
- for (y = 0; y <= 3; y++) |
|
| 369 |
- if (transposed) |
|
| 370 |
- m.m[x*4 + y] = a.m[y+4*0] * b.m[0+4*x] + |
|
| 371 |
- a.m[y+4*1] * b.m[1+4*x] + |
|
| 372 |
- a.m[y+4*2] * b.m[2+4*x] + |
|
| 373 |
- a.m[y+4*3] * b.m[3+4*x]; |
|
| 374 |
- else |
|
| 375 |
- m.m[y*4 + x] = a.m[y*4+0] * b.m[0*4+x] + |
|
| 376 |
- a.m[y*4+1] * b.m[1*4+x] + |
|
| 377 |
- a.m[y*4+2] * b.m[2*4+x] + |
|
| 378 |
- a.m[y*4+3] * b.m[3*4+x]; |
|
| 379 |
- |
|
| 380 |
- return m; |
|
| 381 |
- } |
|
| 382 |
- |
|
| 383 |
- // Ej testad! |
|
| 384 |
- mat3 MultMat3(mat3 a, mat3 b) // m = a * b |
|
| 385 |
- {
|
|
| 386 |
- mat3 m; |
|
| 387 |
- |
|
| 388 |
- int x, y; |
|
| 389 |
- for (x = 0; x <= 2; x++) |
|
| 390 |
- for (y = 0; y <= 2; y++) |
|
| 391 |
- if (transposed) |
|
| 392 |
- m.m[x*3 + y] = a.m[y+3*0] * b.m[0+3*x] + |
|
| 393 |
- a.m[y+3*1] * b.m[1+3*x] + |
|
| 394 |
- a.m[y+3*2] * b.m[2+3*x]; |
|
| 395 |
- else |
|
| 396 |
- m.m[y*3 + x] = a.m[y*3+0] * b.m[0*3+x] + |
|
| 397 |
- a.m[y*3+1] * b.m[1*3+x] + |
|
| 398 |
- a.m[y*3+2] * b.m[2*3+x]; |
|
| 399 |
- |
|
| 400 |
- return m; |
|
| 401 |
- } |
|
| 402 |
- |
|
| 403 |
- // mat4 * vec3 |
|
| 404 |
- // The missing homogenous coordinate is implicitly set to 1. |
|
| 405 |
- vec3 MultVec3(mat4 a, vec3 b) // result = a * b |
|
| 406 |
- {
|
|
| 407 |
- vec3 r; |
|
| 408 |
- |
|
| 409 |
- if (!transposed) |
|
| 410 |
- {
|
|
| 411 |
- r.x = a.m[0]*b.x + a.m[1]*b.y + a.m[2]*b.z + a.m[3]; |
|
| 412 |
- r.y = a.m[4]*b.x + a.m[5]*b.y + a.m[6]*b.z + a.m[7]; |
|
| 413 |
- r.z = a.m[8]*b.x + a.m[9]*b.y + a.m[10]*b.z + a.m[11]; |
|
| 414 |
- } |
|
| 415 |
- else |
|
| 416 |
- {
|
|
| 417 |
- r.x = a.m[0]*b.x + a.m[4]*b.y + a.m[8]*b.z + a.m[12]; |
|
| 418 |
- r.y = a.m[1]*b.x + a.m[5]*b.y + a.m[9]*b.z + a.m[13]; |
|
| 419 |
- r.z = a.m[2]*b.x + a.m[6]*b.y + a.m[10]*b.z + a.m[14]; |
|
| 420 |
- } |
|
| 421 |
- |
|
| 422 |
- return r; |
|
| 423 |
- } |
|
| 424 |
- |
|
| 425 |
- // mat3 * vec3 |
|
| 426 |
- vec3 MultMat3Vec3(mat3 a, vec3 b) // result = a * b |
|
| 427 |
- {
|
|
| 428 |
- vec3 r; |
|
| 429 |
- |
|
| 430 |
- if (!transposed) |
|
| 431 |
- {
|
|
| 432 |
- r.x = a.m[0]*b.x + a.m[1]*b.y + a.m[2]*b.z; |
|
| 433 |
- r.y = a.m[3]*b.x + a.m[4]*b.y + a.m[5]*b.z; |
|
| 434 |
- r.z = a.m[6]*b.x + a.m[7]*b.y + a.m[8]*b.z; |
|
| 435 |
- } |
|
| 436 |
- else |
|
| 437 |
- {
|
|
| 438 |
- r.x = a.m[0]*b.x + a.m[3]*b.y + a.m[6]*b.z; |
|
| 439 |
- r.y = a.m[1]*b.x + a.m[4]*b.y + a.m[7]*b.z; |
|
| 440 |
- r.z = a.m[2]*b.x + a.m[5]*b.y + a.m[8]*b.z; |
|
| 441 |
- } |
|
| 442 |
- |
|
| 443 |
- return r; |
|
| 444 |
- } |
|
| 445 |
- |
|
| 446 |
- // mat4 * vec4 |
|
| 447 |
- vec4 MultVec4(mat4 a, vec4 b) // result = a * b |
|
| 448 |
- {
|
|
| 449 |
- vec4 r; |
|
| 450 |
- |
|
| 451 |
- if (!transposed) |
|
| 452 |
- {
|
|
| 453 |
- r.x = a.m[0]*b.x + a.m[1]*b.y + a.m[2]*b.z + a.m[3]*b.w; |
|
| 454 |
- r.y = a.m[4]*b.x + a.m[5]*b.y + a.m[6]*b.z + a.m[7]*b.w; |
|
| 455 |
- r.z = a.m[8]*b.x + a.m[9]*b.y + a.m[10]*b.z + a.m[11]*b.w; |
|
| 456 |
- r.w = a.m[12]*b.x + a.m[13]*b.y + a.m[14]*b.z + a.m[15]*b.w; |
|
| 457 |
- } |
|
| 458 |
- else |
|
| 459 |
- {
|
|
| 460 |
- r.x = a.m[0]*b.x + a.m[4]*b.y + a.m[8]*b.z + a.m[12]*b.w; |
|
| 461 |
- r.y = a.m[1]*b.x + a.m[5]*b.y + a.m[9]*b.z + a.m[13]*b.w; |
|
| 462 |
- r.z = a.m[2]*b.x + a.m[6]*b.y + a.m[10]*b.z + a.m[14]*b.w; |
|
| 463 |
- r.w = a.m[3]*b.x + a.m[7]*b.y + a.m[11]*b.z + a.m[15]*b.w; |
|
| 464 |
- } |
|
| 465 |
- |
|
| 466 |
- return r; |
|
| 467 |
- } |
|
| 468 |
- |
|
| 469 |
- |
|
| 470 |
-// Unnecessary |
|
| 471 |
-// Will probably be removed |
|
| 472 |
-// void CopyMatrix(GLfloat *src, GLfloat *dest) |
|
| 473 |
-// {
|
|
| 474 |
-// int i; |
|
| 475 |
-// for (i = 0; i <= 15; i++) |
|
| 476 |
-// dest[i] = src[i]; |
|
| 477 |
-// } |
|
| 478 |
- |
|
| 479 |
- |
|
| 480 |
-// Added for lab 3 (TSBK03) |
|
| 481 |
- |
|
| 482 |
- // Orthonormalization of Matrix4D. Assumes rotation only, translation/projection ignored |
|
| 483 |
- void OrthoNormalizeMatrix(mat4 *R) |
|
| 484 |
- {
|
|
| 485 |
- vec3 x, y, z; |
|
| 486 |
- |
|
| 487 |
- if (transposed) |
|
| 488 |
- {
|
|
| 489 |
- x = SetVector(R->m[0], R->m[1], R->m[2]); |
|
| 490 |
- y = SetVector(R->m[4], R->m[5], R->m[6]); |
|
| 491 |
-// SetVector(R[8], R[9], R[10], &z); |
|
| 492 |
- // Kryssa fram ur varandra |
|
| 493 |
- // Normera |
|
| 494 |
- z = CrossProduct(x, y); |
|
| 495 |
- z = Normalize(z); |
|
| 496 |
- x = Normalize(x); |
|
| 497 |
- y = CrossProduct(z, x); |
|
| 498 |
- R->m[0] = x.x; |
|
| 499 |
- R->m[1] = x.y; |
|
| 500 |
- R->m[2] = x.z; |
|
| 501 |
- R->m[4] = y.x; |
|
| 502 |
- R->m[5] = y.y; |
|
| 503 |
- R->m[6] = y.z; |
|
| 504 |
- R->m[8] = z.x; |
|
| 505 |
- R->m[9] = z.y; |
|
| 506 |
- R->m[10] = z.z; |
|
| 507 |
- |
|
| 508 |
- R->m[3] = 0.0; |
|
| 509 |
- R->m[7] = 0.0; |
|
| 510 |
- R->m[11] = 0.0; |
|
| 511 |
- R->m[12] = 0.0; |
|
| 512 |
- R->m[13] = 0.0; |
|
| 513 |
- R->m[14] = 0.0; |
|
| 514 |
- R->m[15] = 1.0; |
|
| 515 |
- } |
|
| 516 |
- else |
|
| 517 |
- {
|
|
| 518 |
- // NOT TESTED |
|
| 519 |
- x = SetVector(R->m[0], R->m[4], R->m[8]); |
|
| 520 |
- y = SetVector(R->m[1], R->m[5], R->m[9]); |
|
| 521 |
-// SetVector(R[2], R[6], R[10], &z); |
|
| 522 |
- // Kryssa fram ur varandra |
|
| 523 |
- // Normera |
|
| 524 |
- z = CrossProduct(x, y); |
|
| 525 |
- z = Normalize(z); |
|
| 526 |
- x = Normalize(x); |
|
| 527 |
- y = CrossProduct(z, x); |
|
| 528 |
- R->m[0] = x.x; |
|
| 529 |
- R->m[4] = x.y; |
|
| 530 |
- R->m[8] = x.z; |
|
| 531 |
- R->m[1] = y.x; |
|
| 532 |
- R->m[5] = y.y; |
|
| 533 |
- R->m[9] = y.z; |
|
| 534 |
- R->m[2] = z.x; |
|
| 535 |
- R->m[6] = z.y; |
|
| 536 |
- R->m[10] = z.z; |
|
| 537 |
- |
|
| 538 |
- R->m[3] = 0.0; |
|
| 539 |
- R->m[7] = 0.0; |
|
| 540 |
- R->m[11] = 0.0; |
|
| 541 |
- R->m[12] = 0.0; |
|
| 542 |
- R->m[13] = 0.0; |
|
| 543 |
- R->m[14] = 0.0; |
|
| 544 |
- R->m[15] = 1.0; |
|
| 545 |
- } |
|
| 546 |
- } |
|
| 547 |
- |
|
| 548 |
- |
|
| 549 |
-// Commented out since I plan to remove it if I can't see a good reason to keep it. |
|
| 550 |
-// // Only transposes rotation part. |
|
| 551 |
-// mat4 TransposeRotation(mat4 m) |
|
| 552 |
-// {
|
|
| 553 |
-// mat4 a; |
|
| 554 |
-// |
|
| 555 |
-// a.m[0] = m.m[0]; a.m[4] = m.m[1]; a.m[8] = m.m[2]; a.m[12] = m.m[12]; |
|
| 556 |
-// a.m[1] = m.m[4]; a.m[5] = m.m[5]; a.m[9] = m.m[6]; a.m[13] = m.m[13]; |
|
| 557 |
-// a.m[2] = m.m[8]; a.m[6] = m.m[9]; a.m[10] = m.m[10]; a.m[14] = m.m[14]; |
|
| 558 |
-// a.m[3] = m.m[3]; a.m[7] = m.m[7]; a.m[11] = m.m[11]; a.m[15] = m.m[15]; |
|
| 559 |
-// |
|
| 560 |
-// return a; |
|
| 561 |
-// } |
|
| 562 |
- |
|
| 563 |
- // Complete transpose! |
|
| 564 |
- mat4 transpose(mat4 m) |
|
| 565 |
- {
|
|
| 566 |
- mat4 a; |
|
| 567 |
- |
|
| 568 |
- a.m[0] = m.m[0]; a.m[4] = m.m[1]; a.m[8] = m.m[2]; a.m[12] = m.m[3]; |
|
| 569 |
- a.m[1] = m.m[4]; a.m[5] = m.m[5]; a.m[9] = m.m[6]; a.m[13] = m.m[7]; |
|
| 570 |
- a.m[2] = m.m[8]; a.m[6] = m.m[9]; a.m[10] = m.m[10]; a.m[14] = m.m[11]; |
|
| 571 |
- a.m[3] = m.m[12]; a.m[7] = m.m[13]; a.m[11] = m.m[14]; a.m[15] = m.m[15]; |
|
| 572 |
- |
|
| 573 |
- return a; |
|
| 574 |
- } |
|
| 575 |
- |
|
| 576 |
- // Complete transpose! |
|
| 577 |
- mat3 TransposeMat3(mat3 m) |
|
| 578 |
- {
|
|
| 579 |
- mat3 a; |
|
| 580 |
- |
|
| 581 |
- a.m[0] = m.m[0]; a.m[3] = m.m[1]; a.m[6] = m.m[2]; |
|
| 582 |
- a.m[1] = m.m[3]; a.m[4] = m.m[4]; a.m[7] = m.m[5]; |
|
| 583 |
- a.m[2] = m.m[6]; a.m[5] = m.m[7]; a.m[8] = m.m[8]; |
|
| 584 |
- |
|
| 585 |
- return a; |
|
| 586 |
- } |
|
| 587 |
- |
|
| 588 |
-// Rotation around arbitrary axis (rotation only) |
|
| 589 |
-mat4 ArbRotate(vec3 axis, GLfloat fi) |
|
| 590 |
-{
|
|
| 591 |
- vec3 x, y, z; |
|
| 592 |
- mat4 R, Rt, Raxel, m; |
|
| 593 |
- |
|
| 594 |
-// Check if parallel to Z |
|
| 595 |
- if (axis.x < 0.0000001) // Below some small value |
|
| 596 |
- if (axis.x > -0.0000001) |
|
| 597 |
- if (axis.y < 0.0000001) |
|
| 598 |
- if (axis.y > -0.0000001) |
|
| 599 |
- {
|
|
| 600 |
- if (axis.z > 0) |
|
| 601 |
- {
|
|
| 602 |
- m = Rz(fi); |
|
| 603 |
- return m; |
|
| 604 |
- } |
|
| 605 |
- else |
|
| 606 |
- {
|
|
| 607 |
- m = Rz(-fi); |
|
| 608 |
- return m; |
|
| 609 |
- } |
|
| 610 |
- } |
|
| 611 |
- |
|
| 612 |
- x = Normalize(axis); |
|
| 613 |
- z = SetVector(0,0,1); // Temp z |
|
| 614 |
- y = Normalize(CrossProduct(z, x)); // y' = z^ x x' |
|
| 615 |
- z = CrossProduct(x, y); // z' = x x y |
|
| 616 |
- |
|
| 617 |
- if (transposed) |
|
| 618 |
- {
|
|
| 619 |
- R.m[0] = x.x; R.m[4] = x.y; R.m[8] = x.z; R.m[12] = 0.0; |
|
| 620 |
- R.m[1] = y.x; R.m[5] = y.y; R.m[9] = y.z; R.m[13] = 0.0; |
|
| 621 |
- R.m[2] = z.x; R.m[6] = z.y; R.m[10] = z.z; R.m[14] = 0.0; |
|
| 622 |
- |
|
| 623 |
- R.m[3] = 0.0; R.m[7] = 0.0; R.m[11] = 0.0; R.m[15] = 1.0; |
|
| 624 |
- } |
|
| 625 |
- else |
|
| 626 |
- {
|
|
| 627 |
- R.m[0] = x.x; R.m[1] = x.y; R.m[2] = x.z; R.m[3] = 0.0; |
|
| 628 |
- R.m[4] = y.x; R.m[5] = y.y; R.m[6] = y.z; R.m[7] = 0.0; |
|
| 629 |
- R.m[8] = z.x; R.m[9] = z.y; R.m[10] = z.z; R.m[11] = 0.0; |
|
| 630 |
- |
|
| 631 |
- R.m[12] = 0.0; R.m[13] = 0.0; R.m[14] = 0.0; R.m[15] = 1.0; |
|
| 632 |
- } |
|
| 633 |
- |
|
| 634 |
- Rt = transpose(R); // Transpose = Invert -> felet ej i Transpose, och det �r en ortonormal matris |
|
| 635 |
- |
|
| 636 |
- Raxel = Rx(fi); // Rotate around x axis |
|
| 637 |
- |
|
| 638 |
- // m := Rt * Rx * R |
|
| 639 |
- m = Mult(Mult(Rt, Raxel), R); |
|
| 640 |
- |
|
| 641 |
- return m; |
|
| 642 |
-} |
|
| 643 |
- |
|
| 644 |
- |
|
| 645 |
-// Not tested much |
|
| 646 |
-mat4 CrossMatrix(vec3 a) // Matrix for cross product |
|
| 647 |
-{
|
|
| 648 |
- mat4 m; |
|
| 649 |
- |
|
| 650 |
- if (transposed) |
|
| 651 |
- {
|
|
| 652 |
- m.m[0] = 0; m.m[4] =-a.z; m.m[8] = a.y; m.m[12] = 0.0; |
|
| 653 |
- m.m[1] = a.z; m.m[5] = 0; m.m[9] =-a.x; m.m[13] = 0.0; |
|
| 654 |
- m.m[2] =-a.y; m.m[6] = a.x; m.m[10]= 0; m.m[14] = 0.0; |
|
| 655 |
- m.m[3] = 0.0; m.m[7] = 0.0; m.m[11]= 0.0; m.m[15] = 0.0; |
|
| 656 |
- // NOTE! 0.0 in the homogous coordinate. Thus, the matrix can |
|
| 657 |
- // not be generally used, but is fine for matrix differentials |
|
| 658 |
- } |
|
| 659 |
- else |
|
| 660 |
- {
|
|
| 661 |
- m.m[0] = 0; m.m[1] =-a.z; m.m[2] = a.y; m.m[3] = 0.0; |
|
| 662 |
- m.m[4] = a.z; m.m[5] = 0; m.m[6] =-a.x; m.m[7] = 0.0; |
|
| 663 |
- m.m[8] =-a.y; m.m[9] = a.x; m.m[10]= 0; m.m[11] = 0.0; |
|
| 664 |
- m.m[12] = 0.0; m.m[13] = 0.0; m.m[14]= 0.0; m.m[15] = 0.0; |
|
| 665 |
- // NOTE! 0.0 in the homogous coordinate. Thus, the matrix can |
|
| 666 |
- // not be generally used, but is fine for matrix differentials |
|
| 667 |
- } |
|
| 668 |
- |
|
| 669 |
- return m; |
|
| 670 |
-} |
|
| 671 |
- |
|
| 672 |
-mat4 MatrixAdd(mat4 a, mat4 b) |
|
| 673 |
-{
|
|
| 674 |
- mat4 dest; |
|
| 675 |
- |
|
| 676 |
- int i; |
|
| 677 |
- for (i = 0; i < 16; i++) |
|
| 678 |
- dest.m[i] = a.m[i] + b.m[i]; |
|
| 679 |
- |
|
| 680 |
- return dest; |
|
| 681 |
-} |
|
| 682 |
- |
|
| 683 |
- |
|
| 684 |
-void SetTransposed(char t) |
|
| 685 |
-{
|
|
| 686 |
- transposed = t; |
|
| 687 |
-} |
|
| 688 |
- |
|
| 689 |
- |
|
| 690 |
-// Build standard matrices |
|
| 691 |
- |
|
| 692 |
-mat4 lookAtv(vec3 p, vec3 l, vec3 v) |
|
| 693 |
-{
|
|
| 694 |
- vec3 n, u; |
|
| 695 |
- mat4 rot, trans; |
|
| 696 |
- |
|
| 697 |
- n = Normalize(VectorSub(p, l)); |
|
| 698 |
- u = Normalize(CrossProduct(v, n)); |
|
| 699 |
- v = CrossProduct(n, u); |
|
| 700 |
- |
|
| 701 |
-// rot = {{ u.x, u.y, u.z, 0,
|
|
| 702 |
-// v.x, v.y, v.z, 0, |
|
| 703 |
-// n.x, n.y, n.z, 0, |
|
| 704 |
-// 0, 0, 0, 1 }}; |
|
| 705 |
-// VS friendly version: |
|
| 706 |
- if (transposed) |
|
| 707 |
- rot = SetMat4(u.x, v.x, n.x, 0, |
|
| 708 |
- u.y, v.y, n.y, 0, |
|
| 709 |
- u.z, v.z, n.z, 0, |
|
| 710 |
- 0, 0, 0, 1); |
|
| 711 |
- else |
|
| 712 |
- rot = SetMat4(u.x, u.y, u.z, 0, |
|
| 713 |
- v.x, v.y, v.z, 0, |
|
| 714 |
- n.x, n.y, n.z, 0, |
|
| 715 |
- 0, 0, 0, 1); |
|
| 716 |
- trans = T(-p.x, -p.y, -p.z); |
|
| 717 |
- return Mult(rot, trans); |
|
| 718 |
-} |
|
| 719 |
- |
|
| 720 |
-mat4 lookAt(GLfloat px, GLfloat py, GLfloat pz, |
|
| 721 |
- GLfloat lx, GLfloat ly, GLfloat lz, |
|
| 722 |
- GLfloat vx, GLfloat vy, GLfloat vz) |
|
| 723 |
-{
|
|
| 724 |
- vec3 p, l, v; |
|
| 725 |
- |
|
| 726 |
- p = SetVector(px, py, pz); |
|
| 727 |
- l = SetVector(lx, ly, lz); |
|
| 728 |
- v = SetVector(vx, vy, vz); |
|
| 729 |
- |
|
| 730 |
- return lookAtv(p, l, v); |
|
| 731 |
-} |
|
| 732 |
- |
|
| 733 |
-// From http://www.opengl.org/wiki/GluPerspective_code |
|
| 734 |
-// Changed names and parameter order to conform with VU style |
|
| 735 |
-// Rewritten 120913 because it was all wrong... |
|
| 736 |
- |
|
| 737 |
-// Creates a projection matrix like gluPerspective or glFrustum. |
|
| 738 |
-// Upload to your shader as usual. |
|
| 739 |
-// 2022: Yet another fix. Was it correct this time? |
|
| 740 |
-mat4 perspective(float fovyInDegrees, float aspectRatio, |
|
| 741 |
- float znear, float zfar) |
|
| 742 |
-{
|
|
| 743 |
- float f = 1.0/tan(fovyInDegrees * M_PI / 360.0); |
|
| 744 |
- mat4 m = SetMat4(f/aspectRatio, 0, 0, 0, |
|
| 745 |
- 0, f, 0, 0, |
|
| 746 |
- 0, 0, (zfar+znear)/(znear-zfar), 2*zfar*znear/(znear-zfar), |
|
| 747 |
- 0, 0, -1, 0); |
|
| 748 |
- if (transposed) |
|
| 749 |
- m = transpose(m); |
|
| 750 |
- return m; |
|
| 751 |
-} |
|
| 752 |
- |
|
| 753 |
-mat4 frustum(float left, float right, float bottom, float top, |
|
| 754 |
- float znear, float zfar) |
|
| 755 |
-{
|
|
| 756 |
- float temp, temp2, temp3, temp4; |
|
| 757 |
- mat4 matrix; |
|
| 758 |
- |
|
| 759 |
- temp = 2.0f * znear; |
|
| 760 |
- temp2 = right - left; |
|
| 761 |
- temp3 = top - bottom; |
|
| 762 |
- temp4 = zfar - znear; |
|
| 763 |
- matrix.m[0] = temp / temp2; // 2*near/(right-left) |
|
| 764 |
- matrix.m[1] = 0.0; |
|
| 765 |
- matrix.m[2] = 0.0; |
|
| 766 |
- matrix.m[3] = 0.0; |
|
| 767 |
- matrix.m[4] = 0.0; |
|
| 768 |
- matrix.m[5] = temp / temp3; // 2*near/(top - bottom) |
|
| 769 |
- matrix.m[6] = 0.0; |
|
| 770 |
- matrix.m[7] = 0.0; |
|
| 771 |
- matrix.m[8] = (right + left) / temp2; // A = r+l / r-l |
|
| 772 |
- matrix.m[9] = (top + bottom) / temp3; // B = t+b / t-b |
|
| 773 |
- matrix.m[10] = (-zfar - znear) / temp4; // C = -(f+n) / f-n |
|
| 774 |
- matrix.m[11] = -1.0; |
|
| 775 |
- matrix.m[12] = 0.0; |
|
| 776 |
- matrix.m[13] = 0.0; |
|
| 777 |
- matrix.m[14] = (-temp * zfar) / temp4; // D = -2fn / f-n |
|
| 778 |
- matrix.m[15] = 0.0; |
|
| 779 |
- |
|
| 780 |
- if (!transposed) |
|
| 781 |
- matrix = transpose(matrix); |
|
| 782 |
- |
|
| 783 |
- return matrix; |
|
| 784 |
-} |
|
| 785 |
- |
|
| 786 |
-// Not tested! |
|
| 787 |
-mat4 ortho(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat near, GLfloat far) |
|
| 788 |
-{
|
|
| 789 |
- float a = 2.0f / (right - left); |
|
| 790 |
- float b = 2.0f / (top - bottom); |
|
| 791 |
- float c = -2.0f / (far - near); |
|
| 792 |
- |
|
| 793 |
- float tx = - (right + left)/(right - left); |
|
| 794 |
- float ty = - (top + bottom)/(top - bottom); |
|
| 795 |
- float tz = - (far + near)/(far - near); |
|
| 796 |
- |
|
| 797 |
- mat4 o = SetMat4( |
|
| 798 |
- a, 0, 0, tx, |
|
| 799 |
- 0, b, 0, ty, |
|
| 800 |
- 0, 0, c, tz, |
|
| 801 |
- 0, 0, 0, 1); |
|
| 802 |
- return o; |
|
| 803 |
-} |
|
| 804 |
- |
|
| 805 |
-// The code below is based on code from: |
|
| 806 |
-// http://www.dr-lex.be/random/matrix_inv.html |
|
| 807 |
- |
|
| 808 |
-// Inverts mat3 (row-wise matrix) |
|
| 809 |
-// (For a more general inverse, try a gaussian elimination.) |
|
| 810 |
-mat3 InvertMat3(mat3 in) |
|
| 811 |
-{
|
|
| 812 |
- float a11, a12, a13, a21, a22, a23, a31, a32, a33; |
|
| 813 |
- mat3 out, nanout; |
|
| 814 |
- float DET; |
|
| 815 |
- |
|
| 816 |
- // Copying to internal variables both clarify the code and |
|
| 817 |
- // buffers data so the output may be identical to the input! |
|
| 818 |
- a11 = in.m[0]; |
|
| 819 |
- a12 = in.m[1]; |
|
| 820 |
- a13 = in.m[2]; |
|
| 821 |
- a21 = in.m[3]; |
|
| 822 |
- a22 = in.m[4]; |
|
| 823 |
- a23 = in.m[5]; |
|
| 824 |
- a31 = in.m[6]; |
|
| 825 |
- a32 = in.m[7]; |
|
| 826 |
- a33 = in.m[8]; |
|
| 827 |
- DET = a11*(a33*a22-a32*a23)-a21*(a33*a12-a32*a13)+a31*(a23*a12-a22*a13); |
|
| 828 |
- if (DET != 0) |
|
| 829 |
- {
|
|
| 830 |
- out.m[0] = (a33*a22-a32*a23)/DET; |
|
| 831 |
- out.m[1] = -(a33*a12-a32*a13)/DET; |
|
| 832 |
- out.m[2] = (a23*a12-a22*a13)/DET; |
|
| 833 |
- out.m[3] = -(a33*a21-a31*a23)/DET; |
|
| 834 |
- out.m[4] = (a33*a11-a31*a13)/DET; |
|
| 835 |
- out.m[5] = -(a23*a11-a21*a13)/DET; |
|
| 836 |
- out.m[6] = (a32*a21-a31*a22)/DET; |
|
| 837 |
- out.m[7] = -(a32*a11-a31*a12)/DET; |
|
| 838 |
- out.m[8] = (a22*a11-a21*a12)/DET; |
|
| 839 |
- } |
|
| 840 |
- else |
|
| 841 |
- {
|
|
| 842 |
- nanout = SetMat3(NAN, NAN, NAN, |
|
| 843 |
- NAN, NAN, NAN, |
|
| 844 |
- NAN, NAN, NAN); |
|
| 845 |
- out = nanout; |
|
| 846 |
- } |
|
| 847 |
- |
|
| 848 |
- return out; |
|
| 849 |
-} |
|
| 850 |
- |
|
| 851 |
-// For making a normal matrix from a model-to-view matrix |
|
| 852 |
-// Takes a mat4 in, ignores 4th row/column (should just be translations), |
|
| 853 |
-// inverts as mat3 (row-wise matrix) and returns the transpose |
|
| 854 |
-mat3 InverseTranspose(mat4 in) |
|
| 855 |
-{
|
|
| 856 |
- float a11, a12, a13, a21, a22, a23, a31, a32, a33; |
|
| 857 |
- mat3 out, nanout; |
|
| 858 |
- float DET; |
|
| 859 |
- |
|
| 860 |
- // Copying to internal variables |
|
| 861 |
- a11 = in.m[0]; |
|
| 862 |
- a12 = in.m[1]; |
|
| 863 |
- a13 = in.m[2]; |
|
| 864 |
- a21 = in.m[4]; |
|
| 865 |
- a22 = in.m[5]; |
|
| 866 |
- a23 = in.m[6]; |
|
| 867 |
- a31 = in.m[8]; |
|
| 868 |
- a32 = in.m[9]; |
|
| 869 |
- a33 = in.m[10]; |
|
| 870 |
- DET = a11*(a33*a22-a32*a23)-a21*(a33*a12-a32*a13)+a31*(a23*a12-a22*a13); |
|
| 871 |
- if (DET != 0) |
|
| 872 |
- {
|
|
| 873 |
- out.m[0] = (a33*a22-a32*a23)/DET; |
|
| 874 |
- out.m[3] = -(a33*a12-a32*a13)/DET; |
|
| 875 |
- out.m[6] = (a23*a12-a22*a13)/DET; |
|
| 876 |
- out.m[1] = -(a33*a21-a31*a23)/DET; |
|
| 877 |
- out.m[4] = (a33*a11-a31*a13)/DET; |
|
| 878 |
- out.m[7] = -(a23*a11-a21*a13)/DET; |
|
| 879 |
- out.m[2] = (a32*a21-a31*a22)/DET; |
|
| 880 |
- out.m[5] = -(a32*a11-a31*a12)/DET; |
|
| 881 |
- out.m[8] = (a22*a11-a21*a12)/DET; |
|
| 882 |
- } |
|
| 883 |
- else |
|
| 884 |
- {
|
|
| 885 |
- nanout = SetMat3(NAN, NAN, NAN, |
|
| 886 |
- NAN, NAN, NAN, |
|
| 887 |
- NAN, NAN, NAN); |
|
| 888 |
- out = nanout; |
|
| 889 |
- } |
|
| 890 |
- |
|
| 891 |
- return out; |
|
| 892 |
-} |
|
| 893 |
- |
|
| 894 |
- |
|
| 895 |
-// Simple conversions |
|
| 896 |
-mat3 mat4tomat3(mat4 m) |
|
| 897 |
-{
|
|
| 898 |
- mat3 result; |
|
| 899 |
- |
|
| 900 |
- result.m[0] = m.m[0]; |
|
| 901 |
- result.m[1] = m.m[1]; |
|
| 902 |
- result.m[2] = m.m[2]; |
|
| 903 |
- result.m[3] = m.m[4]; |
|
| 904 |
- result.m[4] = m.m[5]; |
|
| 905 |
- result.m[5] = m.m[6]; |
|
| 906 |
- result.m[6] = m.m[8]; |
|
| 907 |
- result.m[7] = m.m[9]; |
|
| 908 |
- result.m[8] = m.m[10]; |
|
| 909 |
- return result; |
|
| 910 |
-} |
|
| 911 |
- |
|
| 912 |
-mat4 mat3tomat4(mat3 m) |
|
| 913 |
-{
|
|
| 914 |
- mat4 result; |
|
| 915 |
- |
|
| 916 |
- result.m[0] = m.m[0]; |
|
| 917 |
- result.m[1] = m.m[1]; |
|
| 918 |
- result.m[2] = m.m[2]; |
|
| 919 |
- result.m[3] = 0; |
|
| 920 |
- result.m[4] = m.m[3]; |
|
| 921 |
- result.m[5] = m.m[4]; |
|
| 922 |
- result.m[6] = m.m[5]; |
|
| 923 |
- result.m[7] = 0; |
|
| 924 |
- result.m[8] = m.m[6]; |
|
| 925 |
- result.m[9] = m.m[7]; |
|
| 926 |
- result.m[10] = m.m[8]; |
|
| 927 |
- result.m[11] = 0; |
|
| 928 |
- |
|
| 929 |
- result.m[12] = 0; |
|
| 930 |
- result.m[13] = 0; |
|
| 931 |
- result.m[14] = 0; |
|
| 932 |
- result.m[15] = 1; |
|
| 933 |
- return result; |
|
| 934 |
-} |
|
| 935 |
- |
|
| 936 |
-vec3 vec4tovec3(vec4 v) |
|
| 937 |
-{
|
|
| 938 |
- vec3 result; |
|
| 939 |
- result.x = v.x; |
|
| 940 |
- result.y = v.y; |
|
| 941 |
- result.z = v.z; |
|
| 942 |
- return result; |
|
| 943 |
-} |
|
| 944 |
- |
|
| 945 |
-vec4 vec3tovec4(vec3 v) |
|
| 946 |
-{
|
|
| 947 |
- vec4 result; |
|
| 948 |
- result.x = v.x; |
|
| 949 |
- result.y = v.y; |
|
| 950 |
- result.z = v.z; |
|
| 951 |
- result.w = 1; |
|
| 952 |
- return result; |
|
| 953 |
-} |
|
| 954 |
- |
|
| 955 |
- |
|
| 956 |
-// Stol... I mean adapted from glMatrix (WebGL math unit). Almost no |
|
| 957 |
-// changes despite changing language! But I just might replace it with |
|
| 958 |
-// a gaussian elimination some time. |
|
| 959 |
-mat4 InvertMat4(mat4 a) |
|
| 960 |
-{
|
|
| 961 |
- mat4 b; |
|
| 962 |
- |
|
| 963 |
- float c=a.m[0],d=a.m[1],e=a.m[2],g=a.m[3], |
|
| 964 |
- f=a.m[4],h=a.m[5],i=a.m[6],j=a.m[7], |
|
| 965 |
- k=a.m[8],l=a.m[9],o=a.m[10],m=a.m[11], |
|
| 966 |
- n=a.m[12],p=a.m[13],r=a.m[14],s=a.m[15], |
|
| 967 |
- A=c*h-d*f, |
|
| 968 |
- B=c*i-e*f, |
|
| 969 |
- t=c*j-g*f, |
|
| 970 |
- u=d*i-e*h, |
|
| 971 |
- v=d*j-g*h, |
|
| 972 |
- w=e*j-g*i, |
|
| 973 |
- x=k*p-l*n, |
|
| 974 |
- y=k*r-o*n, |
|
| 975 |
- z=k*s-m*n, |
|
| 976 |
- C=l*r-o*p, |
|
| 977 |
- D=l*s-m*p, |
|
| 978 |
- E=o*s-m*r, |
|
| 979 |
- q=1/(A*E-B*D+t*C+u*z-v*y+w*x); |
|
| 980 |
- b.m[0]=(h*E-i*D+j*C)*q; |
|
| 981 |
- b.m[1]=(-d*E+e*D-g*C)*q; |
|
| 982 |
- b.m[2]=(p*w-r*v+s*u)*q; |
|
| 983 |
- b.m[3]=(-l*w+o*v-m*u)*q; |
|
| 984 |
- b.m[4]=(-f*E+i*z-j*y)*q; |
|
| 985 |
- b.m[5]=(c*E-e*z+g*y)*q; |
|
| 986 |
- b.m[6]=(-n*w+r*t-s*B)*q; |
|
| 987 |
- b.m[7]=(k*w-o*t+m*B)*q; |
|
| 988 |
- b.m[8]=(f*D-h*z+j*x)*q; |
|
| 989 |
- b.m[9]=(-c*D+d*z-g*x)*q; |
|
| 990 |
- b.m[10]=(n*v-p*t+s*A)*q; |
|
| 991 |
- b.m[11]=(-k*v+l*t-m*A)*q; |
|
| 992 |
- b.m[12]=(-f*C+h*y-i*x)*q; |
|
| 993 |
- b.m[13]=(c*C-d*y+e*x)*q; |
|
| 994 |
- b.m[14]=(-n*u+p*B-r*A)*q; |
|
| 995 |
- b.m[15]=(k*u-l*B+o*A)*q; |
|
| 996 |
- return b; |
|
| 997 |
-}; |
|
| 998 |
- |
|
| 999 |
- |
|
| 1000 |
-// Two convenient printing functions suggested by Christian Luckey 2015. |
|
| 1001 |
-// Added printMat3 2019. |
|
| 1002 |
-void printMat4(mat4 m) |
|
| 1003 |
-{
|
|
| 1004 |
- unsigned int i; |
|
| 1005 |
- printf(" ---------------------------------------------------------------\n");
|
|
| 1006 |
- for (i = 0; i < 4; i++) |
|
| 1007 |
- {
|
|
| 1008 |
- int n = i * 4; |
|
| 1009 |
- printf("| %11.5f\t| %11.5f\t| %11.5f\t| %11.5f\t|\n",
|
|
| 1010 |
- m.m[n], m.m[n+1], m.m[n+2], m.m[n+3]); |
|
| 1011 |
- } |
|
| 1012 |
- printf(" ---------------------------------------------------------------\n");
|
|
| 1013 |
-} |
|
| 1014 |
- |
|
| 1015 |
-void printMat3(mat3 m) |
|
| 1016 |
-{
|
|
| 1017 |
- unsigned int i; |
|
| 1018 |
- printf(" ---------------------------------------------------------------\n");
|
|
| 1019 |
- for (i = 0; i < 3; i++) |
|
| 1020 |
- {
|
|
| 1021 |
- int n = i * 3; |
|
| 1022 |
- printf("| %11.5f\t| %11.5f\t| %11.5f\t| \n",
|
|
| 1023 |
- m.m[n], m.m[n+1], m.m[n+2]); |
|
| 1024 |
- } |
|
| 1025 |
- printf(" ---------------------------------------------------------------\n");
|
|
| 1026 |
-} |
|
| 1027 |
- |
|
| 1028 |
-void printVec3(vec3 in) |
|
| 1029 |
-{
|
|
| 1030 |
- printf("(%f, %f, %f)\n", in.x, in.y, in.z);
|
|
| 1031 |
-} |
|
| 1032 |
- |
|
| 1033 |
- |
|
| 1034 |
- |
|
| 1035 |
-/* Utility functions for easier uploads to shaders with error messages. */ |
|
| 1036 |
-// NEW as prototype 2022, added to VU 2023 |
|
| 1037 |
- |
|
| 1038 |
-#define NUM_ERRORS 8 |
|
| 1039 |
- |
|
| 1040 |
-static void ReportError(const char *caller, const char *name) |
|
| 1041 |
-{
|
|
| 1042 |
- static unsigned int draw_error_counter = 0; |
|
| 1043 |
- if(draw_error_counter < NUM_ERRORS) |
|
| 1044 |
- {
|
|
| 1045 |
- fprintf(stderr, "%s warning: '%s' not found in shader!\n", caller, name); |
|
| 1046 |
- draw_error_counter++; |
|
| 1047 |
- } |
|
| 1048 |
- else if(draw_error_counter == NUM_ERRORS) |
|
| 1049 |
- {
|
|
| 1050 |
- fprintf(stderr, "%s: Number of errors bigger than %i. No more vill be printed.\n", caller, NUM_ERRORS); |
|
| 1051 |
- draw_error_counter++; |
|
| 1052 |
- } |
|
| 1053 |
-} |
|
| 1054 |
- |
|
| 1055 |
-void uploadMat4ToShader(GLuint shader, char *nameInShader, mat4 m) |
|
| 1056 |
-{
|
|
| 1057 |
- if (nameInShader == NULL) return; |
|
| 1058 |
- glUseProgram(shader); |
|
| 1059 |
- GLint loc = glGetUniformLocation(shader, nameInShader); |
|
| 1060 |
- if (loc >= 0) |
|
| 1061 |
- glUniformMatrix4fv(loc, 1, GL_TRUE, m.m); |
|
| 1062 |
- else |
|
| 1063 |
- ReportError("uploadMat4ToShader", nameInShader);
|
|
| 1064 |
-} |
|
| 1065 |
- |
|
| 1066 |
-void uploadUniformIntToShader(GLuint shader, char *nameInShader, GLint i) |
|
| 1067 |
-{
|
|
| 1068 |
- if (nameInShader == NULL) return; |
|
| 1069 |
- glUseProgram(shader); |
|
| 1070 |
- GLint loc = glGetUniformLocation(shader, nameInShader); |
|
| 1071 |
- if (loc >= 0) |
|
| 1072 |
- glUniform1i(loc, i); |
|
| 1073 |
- else |
|
| 1074 |
- ReportError("uploadUniformIntToShader", nameInShader);
|
|
| 1075 |
-} |
|
| 1076 |
- |
|
| 1077 |
-void uploadUniformFloatToShader(GLuint shader, char *nameInShader, GLfloat f) |
|
| 1078 |
-{
|
|
| 1079 |
- if (nameInShader == NULL) return; |
|
| 1080 |
- glUseProgram(shader); |
|
| 1081 |
- GLint loc = glGetUniformLocation(shader, nameInShader); |
|
| 1082 |
- if (loc >= 0) |
|
| 1083 |
- glUniform1f(loc, f); |
|
| 1084 |
- else |
|
| 1085 |
- ReportError("uploadUniformFloatToShader", nameInShader);
|
|
| 1086 |
-} |
|
| 1087 |
- |
|
| 1088 |
-void uploadUniformFloatArrayToShader(GLuint shader, char *nameInShader, GLfloat *f, int arrayLength) |
|
| 1089 |
-{
|
|
| 1090 |
- if (nameInShader == NULL) return; |
|
| 1091 |
- glUseProgram(shader); |
|
| 1092 |
- GLint loc = glGetUniformLocation(shader, nameInShader); |
|
| 1093 |
- if (loc >= 0) |
|
| 1094 |
- glUniform1fv(loc, arrayLength, f); |
|
| 1095 |
- else |
|
| 1096 |
- ReportError("uploadUniformFloatToShader", nameInShader);
|
|
| 1097 |
-} |
|
| 1098 |
- |
|
| 1099 |
-void uploadUniformVec3ToShader(GLuint shader, char *nameInShader, vec3 v) |
|
| 1100 |
-{
|
|
| 1101 |
- if (nameInShader == NULL) return; |
|
| 1102 |
- glUseProgram(shader); |
|
| 1103 |
- GLint loc = glGetUniformLocation(shader, nameInShader); |
|
| 1104 |
- if (loc >= 0) |
|
| 1105 |
- glUniform3f(loc, v.x, v.y, v.z); |
|
| 1106 |
- else |
|
| 1107 |
- ReportError("uploadUniformVec3ToShader", nameInShader);
|
|
| 1108 |
-} |
|
| 1109 |
- |
|
| 1110 |
-void uploadUniformVec3ArrayToShader(GLuint shader, char *nameInShader, vec3 *a, int arrayLength) |
|
| 1111 |
-{
|
|
| 1112 |
- if (nameInShader == NULL) return; |
|
| 1113 |
- glUseProgram(shader); |
|
| 1114 |
- GLint loc = glGetUniformLocation(shader, nameInShader); |
|
| 1115 |
- if (loc >= 0) |
|
| 1116 |
- glUniform3fv(loc, arrayLength, (GLfloat *)a); |
|
| 1117 |
- else |
|
| 1118 |
- ReportError("uploadUniformVec3ArrayToShader", nameInShader);
|
|
| 1119 |
-} |
|
| 1120 |
- |
|
| 1121 |
-void bindTextureToTextureUnit(GLuint tex, int unit) |
|
| 1122 |
-{
|
|
| 1123 |
- glActiveTexture(GL_TEXTURE0 + unit); |
|
| 1124 |
- glBindTexture(GL_TEXTURE_2D, tex); |
|
| 1125 |
-} |
| 1 | 1 |
new file mode 100755 |
| ... | ... |
@@ -0,0 +1,1125 @@ |
| 1 |
+// VectorUtils |
|
| 2 |
+// Vector and matrix manipulation library for OpenGL, a package of the most essential functions. |
|
| 3 |
+// Includes: |
|
| 4 |
+// - Basic vector operations: Add, subtract, scale, dot product, cross product. |
|
| 5 |
+// - Basic matrix operations: Multiply matrix to matrix, matric to vector, transpose. |
|
| 6 |
+// - Creation of transformation matrixces: Translation, scaling, rotation. |
|
| 7 |
+// - A few more special operations: Orthonormalizaton of a matrix, CrossMatrix, |
|
| 8 |
+// - Replacements of some GLU functions: lookAt, frustum, perspective. |
|
| 9 |
+// - Inverse and inverse transpose for creating normal matrices. |
|
| 10 |
+// Supports both C and C++. The C interface makes it accessible from most languages if desired. |
|
| 11 |
+ |
|
| 12 |
+// A note on completeness: |
|
| 13 |
+// All operations may not be 100% symmetrical over all types, and some GLSL types are |
|
| 14 |
+// missing (like vec2). These will be added if proven important. There is already |
|
| 15 |
+// some calls of minor importance (mat3 * mat3, mat3 * vec3) included only for |
|
| 16 |
+// symmetry. I don't want the code to grow a lot for such reasons, I want it to be |
|
| 17 |
+// compact and to the point. |
|
| 18 |
+ |
|
| 19 |
+// Current open design questions: |
|
| 20 |
+// Naming conventions: Lower case or capitalized? (Frustum/frustum) |
|
| 21 |
+// Prefix for function calls? (The cost would be more typing and making the code harder to read.) |
|
| 22 |
+// Add vector operations for vec4? Other *essential* symmetry issues? |
|
| 23 |
+// Names for functions when supporting both vec3 and vec4, mat3 and mat4? (vec3Add, vec4Add?) |
|
| 24 |
+ |
|
| 25 |
+ |
|
| 26 |
+// History: |
|
| 27 |
+ |
|
| 28 |
+// VectorUtils is a small (but growing) math unit by Ingemar Ragnemalm. |
|
| 29 |
+// It originated as "geom3d" by Andrew Meggs, but that unit is no more |
|
| 30 |
+// than inspiration today. The original VectorUtils(1) was based on it, |
|
| 31 |
+// while VectorUtils2 was a rewrite primarily to get rid of the over-use |
|
| 32 |
+// of arrays in the original. |
|
| 33 |
+ |
|
| 34 |
+// New version 120201: |
|
| 35 |
+// Defaults to matrices "by the book". Can also be configured to the flipped |
|
| 36 |
+// column-wise matrices that old OpenGL required (and we all hated). |
|
| 37 |
+// This is freshly implemented, limited testing, so there can be bugs. |
|
| 38 |
+// But it seems to work just fine on my tests with translation, rotations |
|
| 39 |
+// and matrix multiplications. |
|
| 40 |
+ |
|
| 41 |
+// 1208??: Added lookAt, perspective, frustum |
|
| 42 |
+// Also made Transpose do what it should. TransposeRotation is the old function. |
|
| 43 |
+// 120913: Fixed perspective. Never trust other's code... |
|
| 44 |
+// 120925: Transposing in CrossMatrix |
|
| 45 |
+// 121119: Fixed one more glitch in perspective. |
|
| 46 |
+ |
|
| 47 |
+// 130227 First draft to a version 3. |
|
| 48 |
+// C++ operators if accessed from C++ |
|
| 49 |
+// Vectors by value when possible. Return values on the stack. |
|
| 50 |
+// (Why was this not the case in VectorUtils2? Beause I tried to stay compatible |
|
| 51 |
+// with an old C compiler. Older C code generally prefers all non-scalar data by |
|
| 52 |
+// reference. But I'd like to move away from that now.) |
|
| 53 |
+// Types conform with GLSL as much as possible (vec3, mat4) |
|
| 54 |
+// Added some operations for mat3 and vec4, but most of them are more for |
|
| 55 |
+// completeness than usefulness; I find vec3's and mat4's to be what I use |
|
| 56 |
+// most of the time. |
|
| 57 |
+// Also added InvertMat3 and InversTranspose to support creation of normal matrices. |
|
| 58 |
+// Marked some calls for removal: CopyVector, TransposeRotation, CopyMatrix. |
|
| 59 |
+// 130308: Added InvertMat4 and some more vec3/vec4 operators (+= etc) |
|
| 60 |
+// 130922: Fixed a vital bug in CrossMatrix. |
|
| 61 |
+// 130924: Fixed a bug in mat3tomat4. |
|
| 62 |
+// 131014: Added TransposeMat3 (although I doubt its importance) |
|
| 63 |
+// 140213: Corrected mat3tomat4. (Were did the correction in 130924 go?) |
|
| 64 |
+// 151210: Added printMat4 and printVec3. |
|
| 65 |
+// 160302: Added empty constructors for vec3 and vec4. |
|
| 66 |
+// 170221: Uses _WIN32 instead of WIN32 |
|
| 67 |
+// 170331: Added stdio.h for printMat4 and printVec3 |
|
| 68 |
+// 180314: Added some #defines for moving closer to GLSL (dot, cross...). |
|
| 69 |
+// 2021-05-15: Constructiors for vec3 etc replaced in order to avoid |
|
| 70 |
+// problems with some C++ compilers. |
|
| 71 |
+// 2022-05-14: Corrected transposed version of lookAtv. |
|
| 72 |
+// 2023-01-31: Added shader upload utility functions. |
|
| 73 |
+ |
|
| 74 |
+// You may use VectorUtils as you please. A reference to the origin is appreciated |
|
| 75 |
+// but if you grab some snippets from it without reference... no problem. |
|
| 76 |
+ |
|
| 77 |
+ |
|
| 78 |
+#include "VectorUtils3.h" |
|
| 79 |
+ |
|
| 80 |
+// VS doesn't define NAN properly |
|
| 81 |
+#ifdef _WIN32 |
|
| 82 |
+ #ifndef NAN |
|
| 83 |
+ static const unsigned long __nan[2] = {0xffffffff, 0x7fffffff};
|
|
| 84 |
+ #define NAN (*(const float *) __nan) |
|
| 85 |
+ #endif |
|
| 86 |
+#endif |
|
| 87 |
+ |
|
| 88 |
+char transposed = 0; |
|
| 89 |
+ |
|
| 90 |
+ vec3 SetVector(GLfloat x, GLfloat y, GLfloat z) |
|
| 91 |
+ {
|
|
| 92 |
+ vec3 v; |
|
| 93 |
+ |
|
| 94 |
+ v.x = x; |
|
| 95 |
+ v.y = y; |
|
| 96 |
+ v.z = z; |
|
| 97 |
+ return v; |
|
| 98 |
+ } |
|
| 99 |
+ |
|
| 100 |
+// New better name |
|
| 101 |
+ vec2 SetVec2(GLfloat x, GLfloat y) |
|
| 102 |
+ {
|
|
| 103 |
+ vec2 v; |
|
| 104 |
+ |
|
| 105 |
+ v.x = x; |
|
| 106 |
+ v.y = y; |
|
| 107 |
+ return v; |
|
| 108 |
+ } |
|
| 109 |
+ |
|
| 110 |
+ vec3 SetVec3(GLfloat x, GLfloat y, GLfloat z) |
|
| 111 |
+ {
|
|
| 112 |
+ vec3 v; |
|
| 113 |
+ |
|
| 114 |
+ v.x = x; |
|
| 115 |
+ v.y = y; |
|
| 116 |
+ v.z = z; |
|
| 117 |
+ return v; |
|
| 118 |
+ } |
|
| 119 |
+ |
|
| 120 |
+ vec4 SetVec4(GLfloat x, GLfloat y, GLfloat z, GLfloat w) |
|
| 121 |
+ {
|
|
| 122 |
+ vec4 v; |
|
| 123 |
+ |
|
| 124 |
+ v.x = x; |
|
| 125 |
+ v.y = y; |
|
| 126 |
+ v.z = z; |
|
| 127 |
+ v.w = w; |
|
| 128 |
+ return v; |
|
| 129 |
+ } |
|
| 130 |
+ |
|
| 131 |
+// Modern C doesn't need this, but Visual Studio insists on old-fashioned C and needs this. |
|
| 132 |
+ mat3 SetMat3(GLfloat p0, GLfloat p1, GLfloat p2, GLfloat p3, GLfloat p4, GLfloat p5, GLfloat p6, GLfloat p7, GLfloat p8) |
|
| 133 |
+ {
|
|
| 134 |
+ mat3 m; |
|
| 135 |
+ m.m[0] = p0; |
|
| 136 |
+ m.m[1] = p1; |
|
| 137 |
+ m.m[2] = p2; |
|
| 138 |
+ m.m[3] = p3; |
|
| 139 |
+ m.m[4] = p4; |
|
| 140 |
+ m.m[5] = p5; |
|
| 141 |
+ m.m[6] = p6; |
|
| 142 |
+ m.m[7] = p7; |
|
| 143 |
+ m.m[8] = p8; |
|
| 144 |
+ return m; |
|
| 145 |
+ } |
|
| 146 |
+ |
|
| 147 |
+// Like above; Modern C doesn't need this, but Visual Studio insists on old-fashioned C and needs this. |
|
| 148 |
+ mat4 SetMat4(GLfloat p0, GLfloat p1, GLfloat p2, GLfloat p3, |
|
| 149 |
+ GLfloat p4, GLfloat p5, GLfloat p6, GLfloat p7, |
|
| 150 |
+ GLfloat p8, GLfloat p9, GLfloat p10, GLfloat p11, |
|
| 151 |
+ GLfloat p12, GLfloat p13, GLfloat p14, GLfloat p15 |
|
| 152 |
+ ) |
|
| 153 |
+ {
|
|
| 154 |
+ mat4 m; |
|
| 155 |
+ m.m[0] = p0; |
|
| 156 |
+ m.m[1] = p1; |
|
| 157 |
+ m.m[2] = p2; |
|
| 158 |
+ m.m[3] = p3; |
|
| 159 |
+ m.m[4] = p4; |
|
| 160 |
+ m.m[5] = p5; |
|
| 161 |
+ m.m[6] = p6; |
|
| 162 |
+ m.m[7] = p7; |
|
| 163 |
+ m.m[8] = p8; |
|
| 164 |
+ m.m[9] = p9; |
|
| 165 |
+ m.m[10] = p10; |
|
| 166 |
+ m.m[11] = p11; |
|
| 167 |
+ m.m[12] = p12; |
|
| 168 |
+ m.m[13] = p13; |
|
| 169 |
+ m.m[14] = p14; |
|
| 170 |
+ m.m[15] = p15; |
|
| 171 |
+ return m; |
|
| 172 |
+ } |
|
| 173 |
+ |
|
| 174 |
+ |
|
| 175 |
+ // vec3 operations |
|
| 176 |
+ // vec4 operations can easily be added but I havn't seen much need for them. |
|
| 177 |
+ // Some are defined as C++ operators though. |
|
| 178 |
+ |
|
| 179 |
+ vec3 VectorSub(vec3 a, vec3 b) |
|
| 180 |
+ {
|
|
| 181 |
+ vec3 result; |
|
| 182 |
+ |
|
| 183 |
+ result.x = a.x - b.x; |
|
| 184 |
+ result.y = a.y - b.y; |
|
| 185 |
+ result.z = a.z - b.z; |
|
| 186 |
+ return result; |
|
| 187 |
+ } |
|
| 188 |
+ |
|
| 189 |
+ vec3 VectorAdd(vec3 a, vec3 b) |
|
| 190 |
+ {
|
|
| 191 |
+ vec3 result; |
|
| 192 |
+ |
|
| 193 |
+ result.x = a.x + b.x; |
|
| 194 |
+ result.y = a.y + b.y; |
|
| 195 |
+ result.z = a.z + b.z; |
|
| 196 |
+ return result; |
|
| 197 |
+ } |
|
| 198 |
+ |
|
| 199 |
+ vec3 CrossProduct(vec3 a, vec3 b) |
|
| 200 |
+ {
|
|
| 201 |
+ vec3 result; |
|
| 202 |
+ |
|
| 203 |
+ result.x = a.y*b.z - a.z*b.y; |
|
| 204 |
+ result.y = a.z*b.x - a.x*b.z; |
|
| 205 |
+ result.z = a.x*b.y - a.y*b.x; |
|
| 206 |
+ |
|
| 207 |
+ return result; |
|
| 208 |
+ } |
|
| 209 |
+ |
|
| 210 |
+ GLfloat DotProduct(vec3 a, vec3 b) |
|
| 211 |
+ {
|
|
| 212 |
+ return a.x * b.x + a.y * b.y + a.z * b.z; |
|
| 213 |
+ } |
|
| 214 |
+ |
|
| 215 |
+ vec3 ScalarMult(vec3 a, GLfloat s) |
|
| 216 |
+ {
|
|
| 217 |
+ vec3 result; |
|
| 218 |
+ |
|
| 219 |
+ result.x = a.x * s; |
|
| 220 |
+ result.y = a.y * s; |
|
| 221 |
+ result.z = a.z * s; |
|
| 222 |
+ |
|
| 223 |
+ return result; |
|
| 224 |
+ } |
|
| 225 |
+ |
|
| 226 |
+ GLfloat Norm(vec3 a) |
|
| 227 |
+ {
|
|
| 228 |
+ GLfloat result; |
|
| 229 |
+ |
|
| 230 |
+ result = (GLfloat)sqrt(a.x * a.x + a.y * a.y + a.z * a.z); |
|
| 231 |
+ return result; |
|
| 232 |
+ } |
|
| 233 |
+ |
|
| 234 |
+ vec3 Normalize(vec3 a) |
|
| 235 |
+ {
|
|
| 236 |
+ GLfloat norm; |
|
| 237 |
+ vec3 result; |
|
| 238 |
+ |
|
| 239 |
+ norm = (GLfloat)sqrt(a.x * a.x + a.y * a.y + a.z * a.z); |
|
| 240 |
+ result.x = a.x / norm; |
|
| 241 |
+ result.y = a.y / norm; |
|
| 242 |
+ result.z = a.z / norm; |
|
| 243 |
+ return result; |
|
| 244 |
+ } |
|
| 245 |
+ |
|
| 246 |
+ vec3 CalcNormalVector(vec3 a, vec3 b, vec3 c) |
|
| 247 |
+ {
|
|
| 248 |
+ vec3 n; |
|
| 249 |
+ |
|
| 250 |
+ n = CrossProduct(VectorSub(a, b), VectorSub(a, c)); |
|
| 251 |
+ n = ScalarMult(n, 1/Norm(n)); |
|
| 252 |
+ |
|
| 253 |
+ return n; |
|
| 254 |
+ } |
|
| 255 |
+ |
|
| 256 |
+// Splits v into vn (parallell to n) and vp (perpendicular). Does not demand n to be normalized. |
|
| 257 |
+ void SplitVector(vec3 v, vec3 n, vec3 *vn, vec3 *vp) |
|
| 258 |
+ {
|
|
| 259 |
+ GLfloat nlen; |
|
| 260 |
+ GLfloat nlen2; |
|
| 261 |
+ |
|
| 262 |
+ nlen = DotProduct(v, n); |
|
| 263 |
+ nlen2 = n.x*n.x+n.y*n.y+n.z*n.z; // Squared length |
|
| 264 |
+ if (nlen2 == 0) |
|
| 265 |
+ {
|
|
| 266 |
+ *vp = v; |
|
| 267 |
+ *vn = SetVector(0, 0, 0); |
|
| 268 |
+ } |
|
| 269 |
+ else |
|
| 270 |
+ {
|
|
| 271 |
+ *vn = ScalarMult(n, nlen/nlen2); |
|
| 272 |
+ *vp = VectorSub(v, *vn); |
|
| 273 |
+ } |
|
| 274 |
+ } |
|
| 275 |
+ |
|
| 276 |
+// Matrix operations primarily on 4x4 matrixes! |
|
| 277 |
+// Row-wise by default but can be configured to column-wise (see SetTransposed) |
|
| 278 |
+ |
|
| 279 |
+ mat4 IdentityMatrix() |
|
| 280 |
+ {
|
|
| 281 |
+ mat4 m; |
|
| 282 |
+ int i; |
|
| 283 |
+ |
|
| 284 |
+ for (i = 0; i <= 15; i++) |
|
| 285 |
+ m.m[i] = 0; |
|
| 286 |
+ for (i = 0; i <= 3; i++) |
|
| 287 |
+ m.m[i * 5] = 1; // 0,5,10,15 |
|
| 288 |
+ return m; |
|
| 289 |
+ } |
|
| 290 |
+ |
|
| 291 |
+ mat4 Rx(GLfloat a) |
|
| 292 |
+ {
|
|
| 293 |
+ mat4 m; |
|
| 294 |
+ m = IdentityMatrix(); |
|
| 295 |
+ m.m[5] = (GLfloat)cos(a); |
|
| 296 |
+ if (transposed) |
|
| 297 |
+ m.m[9] = (GLfloat)-sin(a); |
|
| 298 |
+ else |
|
| 299 |
+ m.m[9] = (GLfloat)sin(a); |
|
| 300 |
+ m.m[6] = -m.m[9]; //sin(a); |
|
| 301 |
+ m.m[10] = m.m[5]; //cos(a); |
|
| 302 |
+ return m; |
|
| 303 |
+ } |
|
| 304 |
+ |
|
| 305 |
+ mat4 Ry(GLfloat a) |
|
| 306 |
+ {
|
|
| 307 |
+ mat4 m; |
|
| 308 |
+ m = IdentityMatrix(); |
|
| 309 |
+ m.m[0] = (GLfloat)cos(a); |
|
| 310 |
+ if (transposed) |
|
| 311 |
+ m.m[8] = (GLfloat)sin(a); // Was flipped |
|
| 312 |
+ else |
|
| 313 |
+ m.m[8] = (GLfloat)-sin(a); |
|
| 314 |
+ m.m[2] = -m.m[8]; //sin(a); |
|
| 315 |
+ m.m[10] = m.m[0]; //cos(a); |
|
| 316 |
+ return m; |
|
| 317 |
+ } |
|
| 318 |
+ |
|
| 319 |
+ mat4 Rz(GLfloat a) |
|
| 320 |
+ {
|
|
| 321 |
+ mat4 m; |
|
| 322 |
+ m = IdentityMatrix(); |
|
| 323 |
+ m.m[0] = (GLfloat)cos(a); |
|
| 324 |
+ if (transposed) |
|
| 325 |
+ m.m[4] = (GLfloat)-sin(a); |
|
| 326 |
+ else |
|
| 327 |
+ m.m[4] = (GLfloat)sin(a); |
|
| 328 |
+ m.m[1] = -m.m[4]; //sin(a); |
|
| 329 |
+ m.m[5] = m.m[0]; //cos(a); |
|
| 330 |
+ return m; |
|
| 331 |
+ } |
|
| 332 |
+ |
|
| 333 |
+ mat4 T(GLfloat tx, GLfloat ty, GLfloat tz) |
|
| 334 |
+ {
|
|
| 335 |
+ mat4 m; |
|
| 336 |
+ m = IdentityMatrix(); |
|
| 337 |
+ if (transposed) |
|
| 338 |
+ {
|
|
| 339 |
+ m.m[12] = tx; |
|
| 340 |
+ m.m[13] = ty; |
|
| 341 |
+ m.m[14] = tz; |
|
| 342 |
+ } |
|
| 343 |
+ else |
|
| 344 |
+ {
|
|
| 345 |
+ m.m[3] = tx; |
|
| 346 |
+ m.m[7] = ty; |
|
| 347 |
+ m.m[11] = tz; |
|
| 348 |
+ } |
|
| 349 |
+ return m; |
|
| 350 |
+ } |
|
| 351 |
+ |
|
| 352 |
+ mat4 S(GLfloat sx, GLfloat sy, GLfloat sz) |
|
| 353 |
+ {
|
|
| 354 |
+ mat4 m; |
|
| 355 |
+ m = IdentityMatrix(); |
|
| 356 |
+ m.m[0] = sx; |
|
| 357 |
+ m.m[5] = sy; |
|
| 358 |
+ m.m[10] = sz; |
|
| 359 |
+ return m; |
|
| 360 |
+ } |
|
| 361 |
+ |
|
| 362 |
+ mat4 Mult(mat4 a, mat4 b) // m = a * b |
|
| 363 |
+ {
|
|
| 364 |
+ mat4 m; |
|
| 365 |
+ |
|
| 366 |
+ int x, y; |
|
| 367 |
+ for (x = 0; x <= 3; x++) |
|
| 368 |
+ for (y = 0; y <= 3; y++) |
|
| 369 |
+ if (transposed) |
|
| 370 |
+ m.m[x*4 + y] = a.m[y+4*0] * b.m[0+4*x] + |
|
| 371 |
+ a.m[y+4*1] * b.m[1+4*x] + |
|
| 372 |
+ a.m[y+4*2] * b.m[2+4*x] + |
|
| 373 |
+ a.m[y+4*3] * b.m[3+4*x]; |
|
| 374 |
+ else |
|
| 375 |
+ m.m[y*4 + x] = a.m[y*4+0] * b.m[0*4+x] + |
|
| 376 |
+ a.m[y*4+1] * b.m[1*4+x] + |
|
| 377 |
+ a.m[y*4+2] * b.m[2*4+x] + |
|
| 378 |
+ a.m[y*4+3] * b.m[3*4+x]; |
|
| 379 |
+ |
|
| 380 |
+ return m; |
|
| 381 |
+ } |
|
| 382 |
+ |
|
| 383 |
+ // Ej testad! |
|
| 384 |
+ mat3 MultMat3(mat3 a, mat3 b) // m = a * b |
|
| 385 |
+ {
|
|
| 386 |
+ mat3 m; |
|
| 387 |
+ |
|
| 388 |
+ int x, y; |
|
| 389 |
+ for (x = 0; x <= 2; x++) |
|
| 390 |
+ for (y = 0; y <= 2; y++) |
|
| 391 |
+ if (transposed) |
|
| 392 |
+ m.m[x*3 + y] = a.m[y+3*0] * b.m[0+3*x] + |
|
| 393 |
+ a.m[y+3*1] * b.m[1+3*x] + |
|
| 394 |
+ a.m[y+3*2] * b.m[2+3*x]; |
|
| 395 |
+ else |
|
| 396 |
+ m.m[y*3 + x] = a.m[y*3+0] * b.m[0*3+x] + |
|
| 397 |
+ a.m[y*3+1] * b.m[1*3+x] + |
|
| 398 |
+ a.m[y*3+2] * b.m[2*3+x]; |
|
| 399 |
+ |
|
| 400 |
+ return m; |
|
| 401 |
+ } |
|
| 402 |
+ |
|
| 403 |
+ // mat4 * vec3 |
|
| 404 |
+ // The missing homogenous coordinate is implicitly set to 1. |
|
| 405 |
+ vec3 MultVec3(mat4 a, vec3 b) // result = a * b |
|
| 406 |
+ {
|
|
| 407 |
+ vec3 r; |
|
| 408 |
+ |
|
| 409 |
+ if (!transposed) |
|
| 410 |
+ {
|
|
| 411 |
+ r.x = a.m[0]*b.x + a.m[1]*b.y + a.m[2]*b.z + a.m[3]; |
|
| 412 |
+ r.y = a.m[4]*b.x + a.m[5]*b.y + a.m[6]*b.z + a.m[7]; |
|
| 413 |
+ r.z = a.m[8]*b.x + a.m[9]*b.y + a.m[10]*b.z + a.m[11]; |
|
| 414 |
+ } |
|
| 415 |
+ else |
|
| 416 |
+ {
|
|
| 417 |
+ r.x = a.m[0]*b.x + a.m[4]*b.y + a.m[8]*b.z + a.m[12]; |
|
| 418 |
+ r.y = a.m[1]*b.x + a.m[5]*b.y + a.m[9]*b.z + a.m[13]; |
|
| 419 |
+ r.z = a.m[2]*b.x + a.m[6]*b.y + a.m[10]*b.z + a.m[14]; |
|
| 420 |
+ } |
|
| 421 |
+ |
|
| 422 |
+ return r; |
|
| 423 |
+ } |
|
| 424 |
+ |
|
| 425 |
+ // mat3 * vec3 |
|
| 426 |
+ vec3 MultMat3Vec3(mat3 a, vec3 b) // result = a * b |
|
| 427 |
+ {
|
|
| 428 |
+ vec3 r; |
|
| 429 |
+ |
|
| 430 |
+ if (!transposed) |
|
| 431 |
+ {
|
|
| 432 |
+ r.x = a.m[0]*b.x + a.m[1]*b.y + a.m[2]*b.z; |
|
| 433 |
+ r.y = a.m[3]*b.x + a.m[4]*b.y + a.m[5]*b.z; |
|
| 434 |
+ r.z = a.m[6]*b.x + a.m[7]*b.y + a.m[8]*b.z; |
|
| 435 |
+ } |
|
| 436 |
+ else |
|
| 437 |
+ {
|
|
| 438 |
+ r.x = a.m[0]*b.x + a.m[3]*b.y + a.m[6]*b.z; |
|
| 439 |
+ r.y = a.m[1]*b.x + a.m[4]*b.y + a.m[7]*b.z; |
|
| 440 |
+ r.z = a.m[2]*b.x + a.m[5]*b.y + a.m[8]*b.z; |
|
| 441 |
+ } |
|
| 442 |
+ |
|
| 443 |
+ return r; |
|
| 444 |
+ } |
|
| 445 |
+ |
|
| 446 |
+ // mat4 * vec4 |
|
| 447 |
+ vec4 MultVec4(mat4 a, vec4 b) // result = a * b |
|
| 448 |
+ {
|
|
| 449 |
+ vec4 r; |
|
| 450 |
+ |
|
| 451 |
+ if (!transposed) |
|
| 452 |
+ {
|
|
| 453 |
+ r.x = a.m[0]*b.x + a.m[1]*b.y + a.m[2]*b.z + a.m[3]*b.w; |
|
| 454 |
+ r.y = a.m[4]*b.x + a.m[5]*b.y + a.m[6]*b.z + a.m[7]*b.w; |
|
| 455 |
+ r.z = a.m[8]*b.x + a.m[9]*b.y + a.m[10]*b.z + a.m[11]*b.w; |
|
| 456 |
+ r.w = a.m[12]*b.x + a.m[13]*b.y + a.m[14]*b.z + a.m[15]*b.w; |
|
| 457 |
+ } |
|
| 458 |
+ else |
|
| 459 |
+ {
|
|
| 460 |
+ r.x = a.m[0]*b.x + a.m[4]*b.y + a.m[8]*b.z + a.m[12]*b.w; |
|
| 461 |
+ r.y = a.m[1]*b.x + a.m[5]*b.y + a.m[9]*b.z + a.m[13]*b.w; |
|
| 462 |
+ r.z = a.m[2]*b.x + a.m[6]*b.y + a.m[10]*b.z + a.m[14]*b.w; |
|
| 463 |
+ r.w = a.m[3]*b.x + a.m[7]*b.y + a.m[11]*b.z + a.m[15]*b.w; |
|
| 464 |
+ } |
|
| 465 |
+ |
|
| 466 |
+ return r; |
|
| 467 |
+ } |
|
| 468 |
+ |
|
| 469 |
+ |
|
| 470 |
+// Unnecessary |
|
| 471 |
+// Will probably be removed |
|
| 472 |
+// void CopyMatrix(GLfloat *src, GLfloat *dest) |
|
| 473 |
+// {
|
|
| 474 |
+// int i; |
|
| 475 |
+// for (i = 0; i <= 15; i++) |
|
| 476 |
+// dest[i] = src[i]; |
|
| 477 |
+// } |
|
| 478 |
+ |
|
| 479 |
+ |
|
| 480 |
+// Added for lab 3 (TSBK03) |
|
| 481 |
+ |
|
| 482 |
+ // Orthonormalization of Matrix4D. Assumes rotation only, translation/projection ignored |
|
| 483 |
+ void OrthoNormalizeMatrix(mat4 *R) |
|
| 484 |
+ {
|
|
| 485 |
+ vec3 x, y, z; |
|
| 486 |
+ |
|
| 487 |
+ if (transposed) |
|
| 488 |
+ {
|
|
| 489 |
+ x = SetVector(R->m[0], R->m[1], R->m[2]); |
|
| 490 |
+ y = SetVector(R->m[4], R->m[5], R->m[6]); |
|
| 491 |
+// SetVector(R[8], R[9], R[10], &z); |
|
| 492 |
+ // Kryssa fram ur varandra |
|
| 493 |
+ // Normera |
|
| 494 |
+ z = CrossProduct(x, y); |
|
| 495 |
+ z = Normalize(z); |
|
| 496 |
+ x = Normalize(x); |
|
| 497 |
+ y = CrossProduct(z, x); |
|
| 498 |
+ R->m[0] = x.x; |
|
| 499 |
+ R->m[1] = x.y; |
|
| 500 |
+ R->m[2] = x.z; |
|
| 501 |
+ R->m[4] = y.x; |
|
| 502 |
+ R->m[5] = y.y; |
|
| 503 |
+ R->m[6] = y.z; |
|
| 504 |
+ R->m[8] = z.x; |
|
| 505 |
+ R->m[9] = z.y; |
|
| 506 |
+ R->m[10] = z.z; |
|
| 507 |
+ |
|
| 508 |
+ R->m[3] = 0.0; |
|
| 509 |
+ R->m[7] = 0.0; |
|
| 510 |
+ R->m[11] = 0.0; |
|
| 511 |
+ R->m[12] = 0.0; |
|
| 512 |
+ R->m[13] = 0.0; |
|
| 513 |
+ R->m[14] = 0.0; |
|
| 514 |
+ R->m[15] = 1.0; |
|
| 515 |
+ } |
|
| 516 |
+ else |
|
| 517 |
+ {
|
|
| 518 |
+ // NOT TESTED |
|
| 519 |
+ x = SetVector(R->m[0], R->m[4], R->m[8]); |
|
| 520 |
+ y = SetVector(R->m[1], R->m[5], R->m[9]); |
|
| 521 |
+// SetVector(R[2], R[6], R[10], &z); |
|
| 522 |
+ // Kryssa fram ur varandra |
|
| 523 |
+ // Normera |
|
| 524 |
+ z = CrossProduct(x, y); |
|
| 525 |
+ z = Normalize(z); |
|
| 526 |
+ x = Normalize(x); |
|
| 527 |
+ y = CrossProduct(z, x); |
|
| 528 |
+ R->m[0] = x.x; |
|
| 529 |
+ R->m[4] = x.y; |
|
| 530 |
+ R->m[8] = x.z; |
|
| 531 |
+ R->m[1] = y.x; |
|
| 532 |
+ R->m[5] = y.y; |
|
| 533 |
+ R->m[9] = y.z; |
|
| 534 |
+ R->m[2] = z.x; |
|
| 535 |
+ R->m[6] = z.y; |
|
| 536 |
+ R->m[10] = z.z; |
|
| 537 |
+ |
|
| 538 |
+ R->m[3] = 0.0; |
|
| 539 |
+ R->m[7] = 0.0; |
|
| 540 |
+ R->m[11] = 0.0; |
|
| 541 |
+ R->m[12] = 0.0; |
|
| 542 |
+ R->m[13] = 0.0; |
|
| 543 |
+ R->m[14] = 0.0; |
|
| 544 |
+ R->m[15] = 1.0; |
|
| 545 |
+ } |
|
| 546 |
+ } |
|
| 547 |
+ |
|
| 548 |
+ |
|
| 549 |
+// Commented out since I plan to remove it if I can't see a good reason to keep it. |
|
| 550 |
+// // Only transposes rotation part. |
|
| 551 |
+// mat4 TransposeRotation(mat4 m) |
|
| 552 |
+// {
|
|
| 553 |
+// mat4 a; |
|
| 554 |
+// |
|
| 555 |
+// a.m[0] = m.m[0]; a.m[4] = m.m[1]; a.m[8] = m.m[2]; a.m[12] = m.m[12]; |
|
| 556 |
+// a.m[1] = m.m[4]; a.m[5] = m.m[5]; a.m[9] = m.m[6]; a.m[13] = m.m[13]; |
|
| 557 |
+// a.m[2] = m.m[8]; a.m[6] = m.m[9]; a.m[10] = m.m[10]; a.m[14] = m.m[14]; |
|
| 558 |
+// a.m[3] = m.m[3]; a.m[7] = m.m[7]; a.m[11] = m.m[11]; a.m[15] = m.m[15]; |
|
| 559 |
+// |
|
| 560 |
+// return a; |
|
| 561 |
+// } |
|
| 562 |
+ |
|
| 563 |
+ // Complete transpose! |
|
| 564 |
+ mat4 transpose(mat4 m) |
|
| 565 |
+ {
|
|
| 566 |
+ mat4 a; |
|
| 567 |
+ |
|
| 568 |
+ a.m[0] = m.m[0]; a.m[4] = m.m[1]; a.m[8] = m.m[2]; a.m[12] = m.m[3]; |
|
| 569 |
+ a.m[1] = m.m[4]; a.m[5] = m.m[5]; a.m[9] = m.m[6]; a.m[13] = m.m[7]; |
|
| 570 |
+ a.m[2] = m.m[8]; a.m[6] = m.m[9]; a.m[10] = m.m[10]; a.m[14] = m.m[11]; |
|
| 571 |
+ a.m[3] = m.m[12]; a.m[7] = m.m[13]; a.m[11] = m.m[14]; a.m[15] = m.m[15]; |
|
| 572 |
+ |
|
| 573 |
+ return a; |
|
| 574 |
+ } |
|
| 575 |
+ |
|
| 576 |
+ // Complete transpose! |
|
| 577 |
+ mat3 TransposeMat3(mat3 m) |
|
| 578 |
+ {
|
|
| 579 |
+ mat3 a; |
|
| 580 |
+ |
|
| 581 |
+ a.m[0] = m.m[0]; a.m[3] = m.m[1]; a.m[6] = m.m[2]; |
|
| 582 |
+ a.m[1] = m.m[3]; a.m[4] = m.m[4]; a.m[7] = m.m[5]; |
|
| 583 |
+ a.m[2] = m.m[6]; a.m[5] = m.m[7]; a.m[8] = m.m[8]; |
|
| 584 |
+ |
|
| 585 |
+ return a; |
|
| 586 |
+ } |
|
| 587 |
+ |
|
| 588 |
+// Rotation around arbitrary axis (rotation only) |
|
| 589 |
+mat4 ArbRotate(vec3 axis, GLfloat fi) |
|
| 590 |
+{
|
|
| 591 |
+ vec3 x, y, z; |
|
| 592 |
+ mat4 R, Rt, Raxel, m; |
|
| 593 |
+ |
|
| 594 |
+// Check if parallel to Z |
|
| 595 |
+ if (axis.x < 0.0000001) // Below some small value |
|
| 596 |
+ if (axis.x > -0.0000001) |
|
| 597 |
+ if (axis.y < 0.0000001) |
|
| 598 |
+ if (axis.y > -0.0000001) |
|
| 599 |
+ {
|
|
| 600 |
+ if (axis.z > 0) |
|
| 601 |
+ {
|
|
| 602 |
+ m = Rz(fi); |
|
| 603 |
+ return m; |
|
| 604 |
+ } |
|
| 605 |
+ else |
|
| 606 |
+ {
|
|
| 607 |
+ m = Rz(-fi); |
|
| 608 |
+ return m; |
|
| 609 |
+ } |
|
| 610 |
+ } |
|
| 611 |
+ |
|
| 612 |
+ x = Normalize(axis); |
|
| 613 |
+ z = SetVector(0,0,1); // Temp z |
|
| 614 |
+ y = Normalize(CrossProduct(z, x)); // y' = z^ x x' |
|
| 615 |
+ z = CrossProduct(x, y); // z' = x x y |
|
| 616 |
+ |
|
| 617 |
+ if (transposed) |
|
| 618 |
+ {
|
|
| 619 |
+ R.m[0] = x.x; R.m[4] = x.y; R.m[8] = x.z; R.m[12] = 0.0; |
|
| 620 |
+ R.m[1] = y.x; R.m[5] = y.y; R.m[9] = y.z; R.m[13] = 0.0; |
|
| 621 |
+ R.m[2] = z.x; R.m[6] = z.y; R.m[10] = z.z; R.m[14] = 0.0; |
|
| 622 |
+ |
|
| 623 |
+ R.m[3] = 0.0; R.m[7] = 0.0; R.m[11] = 0.0; R.m[15] = 1.0; |
|
| 624 |
+ } |
|
| 625 |
+ else |
|
| 626 |
+ {
|
|
| 627 |
+ R.m[0] = x.x; R.m[1] = x.y; R.m[2] = x.z; R.m[3] = 0.0; |
|
| 628 |
+ R.m[4] = y.x; R.m[5] = y.y; R.m[6] = y.z; R.m[7] = 0.0; |
|
| 629 |
+ R.m[8] = z.x; R.m[9] = z.y; R.m[10] = z.z; R.m[11] = 0.0; |
|
| 630 |
+ |
|
| 631 |
+ R.m[12] = 0.0; R.m[13] = 0.0; R.m[14] = 0.0; R.m[15] = 1.0; |
|
| 632 |
+ } |
|
| 633 |
+ |
|
| 634 |
+ Rt = transpose(R); // Transpose = Invert -> felet ej i Transpose, och det �r en ortonormal matris |
|
| 635 |
+ |
|
| 636 |
+ Raxel = Rx(fi); // Rotate around x axis |
|
| 637 |
+ |
|
| 638 |
+ // m := Rt * Rx * R |
|
| 639 |
+ m = Mult(Mult(Rt, Raxel), R); |
|
| 640 |
+ |
|
| 641 |
+ return m; |
|
| 642 |
+} |
|
| 643 |
+ |
|
| 644 |
+ |
|
| 645 |
+// Not tested much |
|
| 646 |
+mat4 CrossMatrix(vec3 a) // Matrix for cross product |
|
| 647 |
+{
|
|
| 648 |
+ mat4 m; |
|
| 649 |
+ |
|
| 650 |
+ if (transposed) |
|
| 651 |
+ {
|
|
| 652 |
+ m.m[0] = 0; m.m[4] =-a.z; m.m[8] = a.y; m.m[12] = 0.0; |
|
| 653 |
+ m.m[1] = a.z; m.m[5] = 0; m.m[9] =-a.x; m.m[13] = 0.0; |
|
| 654 |
+ m.m[2] =-a.y; m.m[6] = a.x; m.m[10]= 0; m.m[14] = 0.0; |
|
| 655 |
+ m.m[3] = 0.0; m.m[7] = 0.0; m.m[11]= 0.0; m.m[15] = 0.0; |
|
| 656 |
+ // NOTE! 0.0 in the homogous coordinate. Thus, the matrix can |
|
| 657 |
+ // not be generally used, but is fine for matrix differentials |
|
| 658 |
+ } |
|
| 659 |
+ else |
|
| 660 |
+ {
|
|
| 661 |
+ m.m[0] = 0; m.m[1] =-a.z; m.m[2] = a.y; m.m[3] = 0.0; |
|
| 662 |
+ m.m[4] = a.z; m.m[5] = 0; m.m[6] =-a.x; m.m[7] = 0.0; |
|
| 663 |
+ m.m[8] =-a.y; m.m[9] = a.x; m.m[10]= 0; m.m[11] = 0.0; |
|
| 664 |
+ m.m[12] = 0.0; m.m[13] = 0.0; m.m[14]= 0.0; m.m[15] = 0.0; |
|
| 665 |
+ // NOTE! 0.0 in the homogous coordinate. Thus, the matrix can |
|
| 666 |
+ // not be generally used, but is fine for matrix differentials |
|
| 667 |
+ } |
|
| 668 |
+ |
|
| 669 |
+ return m; |
|
| 670 |
+} |
|
| 671 |
+ |
|
| 672 |
+mat4 MatrixAdd(mat4 a, mat4 b) |
|
| 673 |
+{
|
|
| 674 |
+ mat4 dest; |
|
| 675 |
+ |
|
| 676 |
+ int i; |
|
| 677 |
+ for (i = 0; i < 16; i++) |
|
| 678 |
+ dest.m[i] = a.m[i] + b.m[i]; |
|
| 679 |
+ |
|
| 680 |
+ return dest; |
|
| 681 |
+} |
|
| 682 |
+ |
|
| 683 |
+ |
|
| 684 |
+void SetTransposed(char t) |
|
| 685 |
+{
|
|
| 686 |
+ transposed = t; |
|
| 687 |
+} |
|
| 688 |
+ |
|
| 689 |
+ |
|
| 690 |
+// Build standard matrices |
|
| 691 |
+ |
|
| 692 |
+mat4 lookAtv(vec3 p, vec3 l, vec3 v) |
|
| 693 |
+{
|
|
| 694 |
+ vec3 n, u; |
|
| 695 |
+ mat4 rot, trans; |
|
| 696 |
+ |
|
| 697 |
+ n = Normalize(VectorSub(p, l)); |
|
| 698 |
+ u = Normalize(CrossProduct(v, n)); |
|
| 699 |
+ v = CrossProduct(n, u); |
|
| 700 |
+ |
|
| 701 |
+// rot = {{ u.x, u.y, u.z, 0,
|
|
| 702 |
+// v.x, v.y, v.z, 0, |
|
| 703 |
+// n.x, n.y, n.z, 0, |
|
| 704 |
+// 0, 0, 0, 1 }}; |
|
| 705 |
+// VS friendly version: |
|
| 706 |
+ if (transposed) |
|
| 707 |
+ rot = SetMat4(u.x, v.x, n.x, 0, |
|
| 708 |
+ u.y, v.y, n.y, 0, |
|
| 709 |
+ u.z, v.z, n.z, 0, |
|
| 710 |
+ 0, 0, 0, 1); |
|
| 711 |
+ else |
|
| 712 |
+ rot = SetMat4(u.x, u.y, u.z, 0, |
|
| 713 |
+ v.x, v.y, v.z, 0, |
|
| 714 |
+ n.x, n.y, n.z, 0, |
|
| 715 |
+ 0, 0, 0, 1); |
|
| 716 |
+ trans = T(-p.x, -p.y, -p.z); |
|
| 717 |
+ return Mult(rot, trans); |
|
| 718 |
+} |
|
| 719 |
+ |
|
| 720 |
+mat4 lookAt(GLfloat px, GLfloat py, GLfloat pz, |
|
| 721 |
+ GLfloat lx, GLfloat ly, GLfloat lz, |
|
| 722 |
+ GLfloat vx, GLfloat vy, GLfloat vz) |
|
| 723 |
+{
|
|
| 724 |
+ vec3 p, l, v; |
|
| 725 |
+ |
|
| 726 |
+ p = SetVector(px, py, pz); |
|
| 727 |
+ l = SetVector(lx, ly, lz); |
|
| 728 |
+ v = SetVector(vx, vy, vz); |
|
| 729 |
+ |
|
| 730 |
+ return lookAtv(p, l, v); |
|
| 731 |
+} |
|
| 732 |
+ |
|
| 733 |
+// From http://www.opengl.org/wiki/GluPerspective_code |
|
| 734 |
+// Changed names and parameter order to conform with VU style |
|
| 735 |
+// Rewritten 120913 because it was all wrong... |
|
| 736 |
+ |
|
| 737 |
+// Creates a projection matrix like gluPerspective or glFrustum. |
|
| 738 |
+// Upload to your shader as usual. |
|
| 739 |
+// 2022: Yet another fix. Was it correct this time? |
|
| 740 |
+mat4 perspective(float fovyInDegrees, float aspectRatio, |
|
| 741 |
+ float znear, float zfar) |
|
| 742 |
+{
|
|
| 743 |
+ float f = 1.0/tan(fovyInDegrees * M_PI / 360.0); |
|
| 744 |
+ mat4 m = SetMat4(f/aspectRatio, 0, 0, 0, |
|
| 745 |
+ 0, f, 0, 0, |
|
| 746 |
+ 0, 0, (zfar+znear)/(znear-zfar), 2*zfar*znear/(znear-zfar), |
|
| 747 |
+ 0, 0, -1, 0); |
|
| 748 |
+ if (transposed) |
|
| 749 |
+ m = transpose(m); |
|
| 750 |
+ return m; |
|
| 751 |
+} |
|
| 752 |
+ |
|
| 753 |
+mat4 frustum(float left, float right, float bottom, float top, |
|
| 754 |
+ float znear, float zfar) |
|
| 755 |
+{
|
|
| 756 |
+ float temp, temp2, temp3, temp4; |
|
| 757 |
+ mat4 matrix; |
|
| 758 |
+ |
|
| 759 |
+ temp = 2.0f * znear; |
|
| 760 |
+ temp2 = right - left; |
|
| 761 |
+ temp3 = top - bottom; |
|
| 762 |
+ temp4 = zfar - znear; |
|
| 763 |
+ matrix.m[0] = temp / temp2; // 2*near/(right-left) |
|
| 764 |
+ matrix.m[1] = 0.0; |
|
| 765 |
+ matrix.m[2] = 0.0; |
|
| 766 |
+ matrix.m[3] = 0.0; |
|
| 767 |
+ matrix.m[4] = 0.0; |
|
| 768 |
+ matrix.m[5] = temp / temp3; // 2*near/(top - bottom) |
|
| 769 |
+ matrix.m[6] = 0.0; |
|
| 770 |
+ matrix.m[7] = 0.0; |
|
| 771 |
+ matrix.m[8] = (right + left) / temp2; // A = r+l / r-l |
|
| 772 |
+ matrix.m[9] = (top + bottom) / temp3; // B = t+b / t-b |
|
| 773 |
+ matrix.m[10] = (-zfar - znear) / temp4; // C = -(f+n) / f-n |
|
| 774 |
+ matrix.m[11] = -1.0; |
|
| 775 |
+ matrix.m[12] = 0.0; |
|
| 776 |
+ matrix.m[13] = 0.0; |
|
| 777 |
+ matrix.m[14] = (-temp * zfar) / temp4; // D = -2fn / f-n |
|
| 778 |
+ matrix.m[15] = 0.0; |
|
| 779 |
+ |
|
| 780 |
+ if (!transposed) |
|
| 781 |
+ matrix = transpose(matrix); |
|
| 782 |
+ |
|
| 783 |
+ return matrix; |
|
| 784 |
+} |
|
| 785 |
+ |
|
| 786 |
+// Not tested! |
|
| 787 |
+mat4 ortho(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat near, GLfloat far) |
|
| 788 |
+{
|
|
| 789 |
+ float a = 2.0f / (right - left); |
|
| 790 |
+ float b = 2.0f / (top - bottom); |
|
| 791 |
+ float c = -2.0f / (far - near); |
|
| 792 |
+ |
|
| 793 |
+ float tx = - (right + left)/(right - left); |
|
| 794 |
+ float ty = - (top + bottom)/(top - bottom); |
|
| 795 |
+ float tz = - (far + near)/(far - near); |
|
| 796 |
+ |
|
| 797 |
+ mat4 o = SetMat4( |
|
| 798 |
+ a, 0, 0, tx, |
|
| 799 |
+ 0, b, 0, ty, |
|
| 800 |
+ 0, 0, c, tz, |
|
| 801 |
+ 0, 0, 0, 1); |
|
| 802 |
+ return o; |
|
| 803 |
+} |
|
| 804 |
+ |
|
| 805 |
+// The code below is based on code from: |
|
| 806 |
+// http://www.dr-lex.be/random/matrix_inv.html |
|
| 807 |
+ |
|
| 808 |
+// Inverts mat3 (row-wise matrix) |
|
| 809 |
+// (For a more general inverse, try a gaussian elimination.) |
|
| 810 |
+mat3 InvertMat3(mat3 in) |
|
| 811 |
+{
|
|
| 812 |
+ float a11, a12, a13, a21, a22, a23, a31, a32, a33; |
|
| 813 |
+ mat3 out, nanout; |
|
| 814 |
+ float DET; |
|
| 815 |
+ |
|
| 816 |
+ // Copying to internal variables both clarify the code and |
|
| 817 |
+ // buffers data so the output may be identical to the input! |
|
| 818 |
+ a11 = in.m[0]; |
|
| 819 |
+ a12 = in.m[1]; |
|
| 820 |
+ a13 = in.m[2]; |
|
| 821 |
+ a21 = in.m[3]; |
|
| 822 |
+ a22 = in.m[4]; |
|
| 823 |
+ a23 = in.m[5]; |
|
| 824 |
+ a31 = in.m[6]; |
|
| 825 |
+ a32 = in.m[7]; |
|
| 826 |
+ a33 = in.m[8]; |
|
| 827 |
+ DET = a11*(a33*a22-a32*a23)-a21*(a33*a12-a32*a13)+a31*(a23*a12-a22*a13); |
|
| 828 |
+ if (DET != 0) |
|
| 829 |
+ {
|
|
| 830 |
+ out.m[0] = (a33*a22-a32*a23)/DET; |
|
| 831 |
+ out.m[1] = -(a33*a12-a32*a13)/DET; |
|
| 832 |
+ out.m[2] = (a23*a12-a22*a13)/DET; |
|
| 833 |
+ out.m[3] = -(a33*a21-a31*a23)/DET; |
|
| 834 |
+ out.m[4] = (a33*a11-a31*a13)/DET; |
|
| 835 |
+ out.m[5] = -(a23*a11-a21*a13)/DET; |
|
| 836 |
+ out.m[6] = (a32*a21-a31*a22)/DET; |
|
| 837 |
+ out.m[7] = -(a32*a11-a31*a12)/DET; |
|
| 838 |
+ out.m[8] = (a22*a11-a21*a12)/DET; |
|
| 839 |
+ } |
|
| 840 |
+ else |
|
| 841 |
+ {
|
|
| 842 |
+ nanout = SetMat3(NAN, NAN, NAN, |
|
| 843 |
+ NAN, NAN, NAN, |
|
| 844 |
+ NAN, NAN, NAN); |
|
| 845 |
+ out = nanout; |
|
| 846 |
+ } |
|
| 847 |
+ |
|
| 848 |
+ return out; |
|
| 849 |
+} |
|
| 850 |
+ |
|
| 851 |
+// For making a normal matrix from a model-to-view matrix |
|
| 852 |
+// Takes a mat4 in, ignores 4th row/column (should just be translations), |
|
| 853 |
+// inverts as mat3 (row-wise matrix) and returns the transpose |
|
| 854 |
+mat3 InverseTranspose(mat4 in) |
|
| 855 |
+{
|
|
| 856 |
+ float a11, a12, a13, a21, a22, a23, a31, a32, a33; |
|
| 857 |
+ mat3 out, nanout; |
|
| 858 |
+ float DET; |
|
| 859 |
+ |
|
| 860 |
+ // Copying to internal variables |
|
| 861 |
+ a11 = in.m[0]; |
|
| 862 |
+ a12 = in.m[1]; |
|
| 863 |
+ a13 = in.m[2]; |
|
| 864 |
+ a21 = in.m[4]; |
|
| 865 |
+ a22 = in.m[5]; |
|
| 866 |
+ a23 = in.m[6]; |
|
| 867 |
+ a31 = in.m[8]; |
|
| 868 |
+ a32 = in.m[9]; |
|
| 869 |
+ a33 = in.m[10]; |
|
| 870 |
+ DET = a11*(a33*a22-a32*a23)-a21*(a33*a12-a32*a13)+a31*(a23*a12-a22*a13); |
|
| 871 |
+ if (DET != 0) |
|
| 872 |
+ {
|
|
| 873 |
+ out.m[0] = (a33*a22-a32*a23)/DET; |
|
| 874 |
+ out.m[3] = -(a33*a12-a32*a13)/DET; |
|
| 875 |
+ out.m[6] = (a23*a12-a22*a13)/DET; |
|
| 876 |
+ out.m[1] = -(a33*a21-a31*a23)/DET; |
|
| 877 |
+ out.m[4] = (a33*a11-a31*a13)/DET; |
|
| 878 |
+ out.m[7] = -(a23*a11-a21*a13)/DET; |
|
| 879 |
+ out.m[2] = (a32*a21-a31*a22)/DET; |
|
| 880 |
+ out.m[5] = -(a32*a11-a31*a12)/DET; |
|
| 881 |
+ out.m[8] = (a22*a11-a21*a12)/DET; |
|
| 882 |
+ } |
|
| 883 |
+ else |
|
| 884 |
+ {
|
|
| 885 |
+ nanout = SetMat3(NAN, NAN, NAN, |
|
| 886 |
+ NAN, NAN, NAN, |
|
| 887 |
+ NAN, NAN, NAN); |
|
| 888 |
+ out = nanout; |
|
| 889 |
+ } |
|
| 890 |
+ |
|
| 891 |
+ return out; |
|
| 892 |
+} |
|
| 893 |
+ |
|
| 894 |
+ |
|
| 895 |
+// Simple conversions |
|
| 896 |
+mat3 mat4tomat3(mat4 m) |
|
| 897 |
+{
|
|
| 898 |
+ mat3 result; |
|
| 899 |
+ |
|
| 900 |
+ result.m[0] = m.m[0]; |
|
| 901 |
+ result.m[1] = m.m[1]; |
|
| 902 |
+ result.m[2] = m.m[2]; |
|
| 903 |
+ result.m[3] = m.m[4]; |
|
| 904 |
+ result.m[4] = m.m[5]; |
|
| 905 |
+ result.m[5] = m.m[6]; |
|
| 906 |
+ result.m[6] = m.m[8]; |
|
| 907 |
+ result.m[7] = m.m[9]; |
|
| 908 |
+ result.m[8] = m.m[10]; |
|
| 909 |
+ return result; |
|
| 910 |
+} |
|
| 911 |
+ |
|
| 912 |
+mat4 mat3tomat4(mat3 m) |
|
| 913 |
+{
|
|
| 914 |
+ mat4 result; |
|
| 915 |
+ |
|
| 916 |
+ result.m[0] = m.m[0]; |
|
| 917 |
+ result.m[1] = m.m[1]; |
|
| 918 |
+ result.m[2] = m.m[2]; |
|
| 919 |
+ result.m[3] = 0; |
|
| 920 |
+ result.m[4] = m.m[3]; |
|
| 921 |
+ result.m[5] = m.m[4]; |
|
| 922 |
+ result.m[6] = m.m[5]; |
|
| 923 |
+ result.m[7] = 0; |
|
| 924 |
+ result.m[8] = m.m[6]; |
|
| 925 |
+ result.m[9] = m.m[7]; |
|
| 926 |
+ result.m[10] = m.m[8]; |
|
| 927 |
+ result.m[11] = 0; |
|
| 928 |
+ |
|
| 929 |
+ result.m[12] = 0; |
|
| 930 |
+ result.m[13] = 0; |
|
| 931 |
+ result.m[14] = 0; |
|
| 932 |
+ result.m[15] = 1; |
|
| 933 |
+ return result; |
|
| 934 |
+} |
|
| 935 |
+ |
|
| 936 |
+vec3 vec4tovec3(vec4 v) |
|
| 937 |
+{
|
|
| 938 |
+ vec3 result; |
|
| 939 |
+ result.x = v.x; |
|
| 940 |
+ result.y = v.y; |
|
| 941 |
+ result.z = v.z; |
|
| 942 |
+ return result; |
|
| 943 |
+} |
|
| 944 |
+ |
|
| 945 |
+vec4 vec3tovec4(vec3 v) |
|
| 946 |
+{
|
|
| 947 |
+ vec4 result; |
|
| 948 |
+ result.x = v.x; |
|
| 949 |
+ result.y = v.y; |
|
| 950 |
+ result.z = v.z; |
|
| 951 |
+ result.w = 1; |
|
| 952 |
+ return result; |
|
| 953 |
+} |
|
| 954 |
+ |
|
| 955 |
+ |
|
| 956 |
+// Stol... I mean adapted from glMatrix (WebGL math unit). Almost no |
|
| 957 |
+// changes despite changing language! But I just might replace it with |
|
| 958 |
+// a gaussian elimination some time. |
|
| 959 |
+mat4 InvertMat4(mat4 a) |
|
| 960 |
+{
|
|
| 961 |
+ mat4 b; |
|
| 962 |
+ |
|
| 963 |
+ float c=a.m[0],d=a.m[1],e=a.m[2],g=a.m[3], |
|
| 964 |
+ f=a.m[4],h=a.m[5],i=a.m[6],j=a.m[7], |
|
| 965 |
+ k=a.m[8],l=a.m[9],o=a.m[10],m=a.m[11], |
|
| 966 |
+ n=a.m[12],p=a.m[13],r=a.m[14],s=a.m[15], |
|
| 967 |
+ A=c*h-d*f, |
|
| 968 |
+ B=c*i-e*f, |
|
| 969 |
+ t=c*j-g*f, |
|
| 970 |
+ u=d*i-e*h, |
|
| 971 |
+ v=d*j-g*h, |
|
| 972 |
+ w=e*j-g*i, |
|
| 973 |
+ x=k*p-l*n, |
|
| 974 |
+ y=k*r-o*n, |
|
| 975 |
+ z=k*s-m*n, |
|
| 976 |
+ C=l*r-o*p, |
|
| 977 |
+ D=l*s-m*p, |
|
| 978 |
+ E=o*s-m*r, |
|
| 979 |
+ q=1/(A*E-B*D+t*C+u*z-v*y+w*x); |
|
| 980 |
+ b.m[0]=(h*E-i*D+j*C)*q; |
|
| 981 |
+ b.m[1]=(-d*E+e*D-g*C)*q; |
|
| 982 |
+ b.m[2]=(p*w-r*v+s*u)*q; |
|
| 983 |
+ b.m[3]=(-l*w+o*v-m*u)*q; |
|
| 984 |
+ b.m[4]=(-f*E+i*z-j*y)*q; |
|
| 985 |
+ b.m[5]=(c*E-e*z+g*y)*q; |
|
| 986 |
+ b.m[6]=(-n*w+r*t-s*B)*q; |
|
| 987 |
+ b.m[7]=(k*w-o*t+m*B)*q; |
|
| 988 |
+ b.m[8]=(f*D-h*z+j*x)*q; |
|
| 989 |
+ b.m[9]=(-c*D+d*z-g*x)*q; |
|
| 990 |
+ b.m[10]=(n*v-p*t+s*A)*q; |
|
| 991 |
+ b.m[11]=(-k*v+l*t-m*A)*q; |
|
| 992 |
+ b.m[12]=(-f*C+h*y-i*x)*q; |
|
| 993 |
+ b.m[13]=(c*C-d*y+e*x)*q; |
|
| 994 |
+ b.m[14]=(-n*u+p*B-r*A)*q; |
|
| 995 |
+ b.m[15]=(k*u-l*B+o*A)*q; |
|
| 996 |
+ return b; |
|
| 997 |
+}; |
|
| 998 |
+ |
|
| 999 |
+ |
|
| 1000 |
+// Two convenient printing functions suggested by Christian Luckey 2015. |
|
| 1001 |
+// Added printMat3 2019. |
|
| 1002 |
+void printMat4(mat4 m) |
|
| 1003 |
+{
|
|
| 1004 |
+ unsigned int i; |
|
| 1005 |
+ printf(" ---------------------------------------------------------------\n");
|
|
| 1006 |
+ for (i = 0; i < 4; i++) |
|
| 1007 |
+ {
|
|
| 1008 |
+ int n = i * 4; |
|
| 1009 |
+ printf("| %11.5f\t| %11.5f\t| %11.5f\t| %11.5f\t|\n",
|
|
| 1010 |
+ m.m[n], m.m[n+1], m.m[n+2], m.m[n+3]); |
|
| 1011 |
+ } |
|
| 1012 |
+ printf(" ---------------------------------------------------------------\n");
|
|
| 1013 |
+} |
|
| 1014 |
+ |
|
| 1015 |
+void printMat3(mat3 m) |
|
| 1016 |
+{
|
|
| 1017 |
+ unsigned int i; |
|
| 1018 |
+ printf(" ---------------------------------------------------------------\n");
|
|
| 1019 |
+ for (i = 0; i < 3; i++) |
|
| 1020 |
+ {
|
|
| 1021 |
+ int n = i * 3; |
|
| 1022 |
+ printf("| %11.5f\t| %11.5f\t| %11.5f\t| \n",
|
|
| 1023 |
+ m.m[n], m.m[n+1], m.m[n+2]); |
|
| 1024 |
+ } |
|
| 1025 |
+ printf(" ---------------------------------------------------------------\n");
|
|
| 1026 |
+} |
|
| 1027 |
+ |
|
| 1028 |
+void printVec3(vec3 in) |
|
| 1029 |
+{
|
|
| 1030 |
+ printf("(%f, %f, %f)\n", in.x, in.y, in.z);
|
|
| 1031 |
+} |
|
| 1032 |
+ |
|
| 1033 |
+ |
|
| 1034 |
+ |
|
| 1035 |
+/* Utility functions for easier uploads to shaders with error messages. */ |
|
| 1036 |
+// NEW as prototype 2022, added to VU 2023 |
|
| 1037 |
+ |
|
| 1038 |
+#define NUM_ERRORS 8 |
|
| 1039 |
+ |
|
| 1040 |
+static void ReportError(const char *caller, const char *name) |
|
| 1041 |
+{
|
|
| 1042 |
+ static unsigned int draw_error_counter = 0; |
|
| 1043 |
+ if(draw_error_counter < NUM_ERRORS) |
|
| 1044 |
+ {
|
|
| 1045 |
+ fprintf(stderr, "%s warning: '%s' not found in shader!\n", caller, name); |
|
| 1046 |
+ draw_error_counter++; |
|
| 1047 |
+ } |
|
| 1048 |
+ else if(draw_error_counter == NUM_ERRORS) |
|
| 1049 |
+ {
|
|
| 1050 |
+ fprintf(stderr, "%s: Number of errors bigger than %i. No more vill be printed.\n", caller, NUM_ERRORS); |
|
| 1051 |
+ draw_error_counter++; |
|
| 1052 |
+ } |
|
| 1053 |
+} |
|
| 1054 |
+ |
|
| 1055 |
+void uploadMat4ToShader(GLuint shader, char *nameInShader, mat4 m) |
|
| 1056 |
+{
|
|
| 1057 |
+ if (nameInShader == NULL) return; |
|
| 1058 |
+ glUseProgram(shader); |
|
| 1059 |
+ GLint loc = glGetUniformLocation(shader, nameInShader); |
|
| 1060 |
+ if (loc >= 0) |
|
| 1061 |
+ glUniformMatrix4fv(loc, 1, GL_TRUE, m.m); |
|
| 1062 |
+ else |
|
| 1063 |
+ ReportError("uploadMat4ToShader", nameInShader);
|
|
| 1064 |
+} |
|
| 1065 |
+ |
|
| 1066 |
+void uploadUniformIntToShader(GLuint shader, char *nameInShader, GLint i) |
|
| 1067 |
+{
|
|
| 1068 |
+ if (nameInShader == NULL) return; |
|
| 1069 |
+ glUseProgram(shader); |
|
| 1070 |
+ GLint loc = glGetUniformLocation(shader, nameInShader); |
|
| 1071 |
+ if (loc >= 0) |
|
| 1072 |
+ glUniform1i(loc, i); |
|
| 1073 |
+ else |
|
| 1074 |
+ ReportError("uploadUniformIntToShader", nameInShader);
|
|
| 1075 |
+} |
|
| 1076 |
+ |
|
| 1077 |
+void uploadUniformFloatToShader(GLuint shader, char *nameInShader, GLfloat f) |
|
| 1078 |
+{
|
|
| 1079 |
+ if (nameInShader == NULL) return; |
|
| 1080 |
+ glUseProgram(shader); |
|
| 1081 |
+ GLint loc = glGetUniformLocation(shader, nameInShader); |
|
| 1082 |
+ if (loc >= 0) |
|
| 1083 |
+ glUniform1f(loc, f); |
|
| 1084 |
+ else |
|
| 1085 |
+ ReportError("uploadUniformFloatToShader", nameInShader);
|
|
| 1086 |
+} |
|
| 1087 |
+ |
|
| 1088 |
+void uploadUniformFloatArrayToShader(GLuint shader, char *nameInShader, GLfloat *f, int arrayLength) |
|
| 1089 |
+{
|
|
| 1090 |
+ if (nameInShader == NULL) return; |
|
| 1091 |
+ glUseProgram(shader); |
|
| 1092 |
+ GLint loc = glGetUniformLocation(shader, nameInShader); |
|
| 1093 |
+ if (loc >= 0) |
|
| 1094 |
+ glUniform1fv(loc, arrayLength, f); |
|
| 1095 |
+ else |
|
| 1096 |
+ ReportError("uploadUniformFloatToShader", nameInShader);
|
|
| 1097 |
+} |
|
| 1098 |
+ |
|
| 1099 |
+void uploadUniformVec3ToShader(GLuint shader, char *nameInShader, vec3 v) |
|
| 1100 |
+{
|
|
| 1101 |
+ if (nameInShader == NULL) return; |
|
| 1102 |
+ glUseProgram(shader); |
|
| 1103 |
+ GLint loc = glGetUniformLocation(shader, nameInShader); |
|
| 1104 |
+ if (loc >= 0) |
|
| 1105 |
+ glUniform3f(loc, v.x, v.y, v.z); |
|
| 1106 |
+ else |
|
| 1107 |
+ ReportError("uploadUniformVec3ToShader", nameInShader);
|
|
| 1108 |
+} |
|
| 1109 |
+ |
|
| 1110 |
+void uploadUniformVec3ArrayToShader(GLuint shader, char *nameInShader, vec3 *a, int arrayLength) |
|
| 1111 |
+{
|
|
| 1112 |
+ if (nameInShader == NULL) return; |
|
| 1113 |
+ glUseProgram(shader); |
|
| 1114 |
+ GLint loc = glGetUniformLocation(shader, nameInShader); |
|
| 1115 |
+ if (loc >= 0) |
|
| 1116 |
+ glUniform3fv(loc, arrayLength, (GLfloat *)a); |
|
| 1117 |
+ else |
|
| 1118 |
+ ReportError("uploadUniformVec3ArrayToShader", nameInShader);
|
|
| 1119 |
+} |
|
| 1120 |
+ |
|
| 1121 |
+void bindTextureToTextureUnit(GLuint tex, int unit) |
|
| 1122 |
+{
|
|
| 1123 |
+ glActiveTexture(GL_TEXTURE0 + unit); |
|
| 1124 |
+ glBindTexture(GL_TEXTURE_2D, tex); |
|
| 1125 |
+} |