b23636c9 |
// VectorUtils4, header only version!
// You must define MAIN in only one file (typically the main
// program) in order to only complile the implementation section once!
// The #define must be BEFORE the "include of this file!
// VectorUtils
// Vector and matrix manipulation library for OpenGL, a package of the most essential functions.
// This is intended as a mini version of GLM.
// Includes:
// - Basic vector operations: Add, subtract, scale, dot product, cross product.
// - Basic matrix operations: Multiply matrix to matrix, matric to vector, transpose.
// - Creation of transformation matrixces: Translation, scaling, rotation.
// - A few more special operations: Orthonormalizaton of a matrix, CrossMatrix,
// - Replacements of some GLU functions: lookAt, frustum, perspective.
// - Inverse and inverse transpose for creating normal matrices.
// Supports both C and C++. The C interface makes it accessible from most languages if desired.
// A note on completeness:
// All operations may not be 100% symmetrical over all types, and some GLSL types are
// missing (like vec2). These will be added if proven important. There are already
// some calls of minor importance (mat3 * mat3, mat3 * vec3) included only for
// symmetry. I don't want the code to grow a lot for such reasons, I want it to be
// compact and to the point.
// Current open design questions:
// Naming conventions: Lower case or capitalized? (Frustum/frustum)
// Prefix for function calls? (The cost would be more typing and making the code harder to read.)
// Add vector operations for vec4? Other *essential* symmetry issues?
// Names for functions when supporting both vec3 and vec4, mat3 and mat4? (vec3Add, vec4Add?)
// History:
// VectorUtils is a small (but growing) math unit by Ingemar Ragnemalm.
// It originated as "geom3d" by Andrew Meggs, but that unit is no more
// than inspiration today. The original VectorUtils(1) was based on it,
// while VectorUtils2 was a rewrite primarily to get rid of the over-use
// of arrays in the original.
// New version 120201:
// Defaults to matrices "by the book". Can also be configured to the flipped
// column-wise matrices that old OpenGL required (and we all hated).
// This is freshly implemented, limited testing, so there can be bugs.
// But it seems to work just fine on my tests with translation, rotations
// and matrix multiplications.
// 1208??: Added lookAt, perspective, frustum
// Also made Transpose do what it should. TransposeRotation is the old function.
// 120913: Fixed perspective. Never trust other's code...
// 120925: Transposing in CrossMatrix
// 121119: Fixed one more glitch in perspective.
// 130227 First draft to a version 3.
// C++ operators if accessed from C++
// Vectors by value when possible. Return values on the stack.
// (Why was this not the case in VectorUtils2? Beause I tried to stay compatible
// with an old C compiler. Older C code generally prefers all non-scalar data by
// reference. But I'd like to move away from that now.)
// Types conform with GLSL as much as possible (vec3, mat4)
// Added some operations for mat3 and vec4, but most of them are more for
// completeness than usefulness; I find vec3's and mat4's to be what I use
// most of the time.
// Also added InvertMat3 and InversTranspose to support creation of normal matrices.
// Marked some calls for removal: CopyVector, TransposeRotation, CopyMatrix.
// 130308: Added InvertMat4 and some more vec3/vec4 operators (+= etc)
// 130922: Fixed a vital bug in CrossMatrix.
// 130924: Fixed a bug in mat3tomat4.
// 131014: Added TransposeMat3 (although I doubt its importance)
// 140213: Corrected mat3tomat4. (Were did the correction in 130924 go?)
// 151210: Added printMat4 and printVec3.
// 160302: Added empty constuctors for vec3 and vec4.
// 170221: Uses _WIN32 instead of WIN32
// 170331: Added stdio.h for printMat4 and printVec3
// 180314: Added some #defines for moving closer to GLSL (dot, cross...).
// 2021-05-15: Constructors for vec3 etc replaced in order to avoid
|
e797f203 |
// problems with some C++ compilers.
|
b23636c9 |
// 2022-05-05: Created VectorUtils4, now only a header file!
// You must define MAIN in only one file (typically the main
// program) in order to only complile the implementation section once!
// This means:
// + Only ONE file
// + I can now safely re-introduce the constructors again!
// + I can move closer to GLM and GLSL syntax
// - You must #define MAIN in the main program
// This means that VectorUtils can still be used from C and thereby many other languages,
// while taking more advantage of C++ features when using C++.
|
49ca15c4 |
// 20220525: Revised perpective() to conform with the reference manual as well as GLM.
// 20230205: Added new helper functions, uploadMat4ToShader etc.
// Made a better #ifdef for handling multiple inclusions.
|
5973d707 |
// 20230227: Fixed the mat4(mat3) constructor.
|
b23636c9 |
// You may use VectorUtils as you please. A reference to the origin is appreciated
// but if you grab some snippets from it without reference... no problem.
|
49ca15c4 |
// VectorUtils4 interface part
// See implementation part for more information
|
b23636c9 |
#ifndef VECTORUTILS4
#define VECTORUTILS4
#ifdef __APPLE__
#define GL_SILENCE_DEPRECATION
#include <OpenGL/gl3.h>
#else
#if defined(_WIN32)
#include "glew.h"
#endif
#include <GL/gl.h>
#endif
#include <math.h>
#include <stdio.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
// GLSL-style
// These are already changed, here I define the intermediate type names that I use in some demos.
#define Point3D vec3
#define Matrix3D mat3
#define Matrix4D mat4
#define DotProduct dot
#define CrossProduct cross
#define Normalize normalize
#define Transpose transpose
// Furthermore, SplitVector should be revised to conform with reflect()
// Note 210515: I have removed the constructors from my structs below in order to please
// some compilers. They did work but the compilers were upset about C using these
// without knowing about the constructors, while the C++ code happily used them.
// However, we do not need them; you can initialize with SetVec* instead of
// vec*() and it will work.
|
49ca15c4 |
// Note 2022: These are now back (and more), which is possible when doing this as a header only unit
// so it works with both C and C++ and still allows the constructors.
|
b23636c9 |
typedef struct vec4 vec4;
|
49ca15c4 |
|
b23636c9 |
// vec3 is very useful
typedef struct vec3
{
// GLfloat x, y, z;
union
{GLfloat x; GLfloat r;};
union
{GLfloat y; GLfloat g;};
union
{GLfloat z; GLfloat b;};
#ifdef __cplusplus
vec3() {}
vec3(GLfloat x2, GLfloat y2, GLfloat z2) : x(x2), y(y2), z(z2) {}
vec3(GLfloat x2) : x(x2), y(x2), z(x2) {}
// vec3(vec4 v) : x(v.x), y(v.y), z(v.z) {}
vec3(vec4 v);
#endif
} vec3, *vec3Ptr;
|
49ca15c4 |
|
b23636c9 |
// vec4 is not as useful. Can be a color with alpha, or a quaternion, but IMHO you
// rarely need homogenous coordinate vectors on the CPU.
typedef struct vec4
{
// GLfloat x, y, z, w; // w or h
union
{GLfloat x; GLfloat r;};
union
{GLfloat y; GLfloat g;};
union
{GLfloat z; GLfloat b;};
union
{GLfloat h; GLfloat w; GLfloat a;};
#ifdef __cplusplus
vec4() {}
vec4(GLfloat x2, GLfloat y2, GLfloat z2, GLfloat w2) : x(x2), y(y2), z(z2), w(w2) {}
vec4(GLfloat xyz, GLfloat w2) : x(xyz), y(xyz), z(xyz), w(w2) {}
vec4(vec3 v, GLfloat w2) : x(v.x), y(v.y), z(v.z), w(w2) {}
vec4(vec3 v) : x(v.x), y(v.y), z(v.z), w(1) {}
#endif
} vec4, *vec4Ptr;
// vec2 is mostly used for texture cordinates, so I havn't bothered defining any operations for it
typedef struct vec2
{
// GLfloat x, y;
union
{GLfloat x; GLfloat s;};
union
{GLfloat y; GLfloat t;};
|
49ca15c4 |
|
b23636c9 |
#ifdef __cplusplus
vec2() {}
vec2(GLfloat x2, GLfloat y2) : x(x2), y(y2) {}
#endif
} vec2, *vec2Ptr;
|
49ca15c4 |
|
b23636c9 |
typedef struct mat3 mat3;
typedef struct mat4
{
GLfloat m[16];
#ifdef __cplusplus
mat4() {}
mat4(GLfloat x2)
{
m[0] = x2; m[1] = 0; m[2] = 0; m[3] = 0;
m[4] = 0; m[5] = x2; m[6] = 0; m[7] = 0;
m[8] = 0; m[9] = 0; m[10] = x2; m[11] = 0;
m[12] = 0; m[13] = 0; m[14] = 0; m[15] = x2;
}
mat4(GLfloat p0, GLfloat p1, GLfloat p2, GLfloat p3,
GLfloat p4, GLfloat p5, GLfloat p6, GLfloat p7,
|
49ca15c4 |
GLfloat p8, GLfloat p9, GLfloat p10, GLfloat p11,
|
b23636c9 |
GLfloat p12, GLfloat p13, GLfloat p14, GLfloat p15)
{
m[0] = p0; m[1] = p1; m[2] = p2; m[3] = p3;
m[4] = p4; m[5] = p5; m[6] = p6; m[7] = p7;
m[8] = p8; m[9] = p9; m[10] = p10; m[11] = p11;
m[12] = p12; m[13] = p13; m[14] = p14; m[15] = p15;
}
mat4(mat3 x);
#endif
} mat4;
typedef struct mat3
{
GLfloat m[9];
#ifdef __cplusplus
mat3() {}
mat3(GLfloat x2)
{
m[0] = x2; m[1] = 0; m[2] = 0;
m[3] = 0; m[4] = x2; m[5] = 0;
m[6] = 0; m[7] = 0; m[8] = x2;
}
mat3(GLfloat p0, GLfloat p1, GLfloat p2,
GLfloat p3, GLfloat p4, GLfloat p5,
GLfloat p6, GLfloat p7, GLfloat p8)
{
m[0] = p0; m[1] = p1; m[2] = p2;
m[3] = p3; m[4] = p4; m[5] = p5;
m[6] = p6; m[7] = p7; m[8] = p8;
}
mat3(mat4 x)
{
m[0] = x.m[0]; m[1] = x.m[1]; m[2] = x.m[2];
m[3] = x.m[4]; m[4] = x.m[5]; m[5] = x.m[6];
m[6] = x.m[8]; m[7] = x.m[9]; m[8] = x.m[10];
}
mat3(vec3 x1, vec3 x2, vec3 x3)
{
m[0] = x1.x; m[1] = x1.y; m[2] = x1.z;
m[3] = x2.x; m[4] = x2.y; m[5] = x2.z;
m[6] = x3.x; m[7] = x3.y; m[8] = x3.z;
}
#endif
} mat3;
#ifdef __cplusplus
|
5973d707 |
// This needed to be compiled only once - moved to implementation.
// This most likely must be done with several more!
// vec3::vec3(vec4 v) : x(v.x), y(v.y), z(v.z) {}
// mat4::mat4(mat3 x)
// {
// m[0] = x.m[0]; m[1] = x.m[1]; m[2] = x.m[2]; m[3] = 0;
// m[4] = x.m[3]; m[5] = x.m[4]; m[6] = x.m[5]; m[7] = 0;
// m[8] = x.m[6]; m[9] = x.m[7]; m[10] = x.m[8]; m[11] = 0;
// m[12] = x.m[0]; m[13] = x.m[0]; m[14] = x.m[0]; m[15] = 1;
// }
|
b23636c9 |
#endif
//#ifdef __cplusplus
//extern "C" {
//#endif
// New better name for SetVector and replacements for constructors
vec2 SetVec2(GLfloat x, GLfloat y);
vec3 SetVec3(GLfloat x, GLfloat y, GLfloat z);
vec4 SetVec4(GLfloat x, GLfloat y, GLfloat z, GLfloat w);
vec3 SetVector(GLfloat x, GLfloat y, GLfloat z);
mat3 SetMat3(GLfloat p0, GLfloat p1, GLfloat p2, GLfloat p3, GLfloat p4, GLfloat p5, GLfloat p6, GLfloat p7, GLfloat p8);
mat4 SetMat4(GLfloat p0, GLfloat p1, GLfloat p2, GLfloat p3,
GLfloat p4, GLfloat p5, GLfloat p6, GLfloat p7,
|
49ca15c4 |
GLfloat p8, GLfloat p9, GLfloat p10, GLfloat p11,
|
b23636c9 |
GLfloat p12, GLfloat p13, GLfloat p14, GLfloat p15
);
// Basic vector operations on vec3's. (vec4 not included since I never need them.)
// Note: C++ users can also use operator overloading, defined below.
vec3 VectorSub(vec3 a, vec3 b);
vec3 VectorAdd(vec3 a, vec3 b);
vec3 cross(vec3 a, vec3 b);
GLfloat dot(vec3 a, vec3 b);
vec3 ScalarMult(vec3 a, GLfloat s);
GLfloat Norm(vec3 a);
vec3 normalize(vec3 a);
vec3 CalcNormalVector(vec3 a, vec3 b, vec3 c);
void SplitVector(vec3 v, vec3 n, vec3 *vn, vec3 *vp);
// Matrix operations primarily on 4x4 matrixes!
// Row-wise by default but can be configured to column-wise (see SetTransposed)
mat4 IdentityMatrix();
mat4 Rx(GLfloat a);
mat4 Ry(GLfloat a);
mat4 Rz(GLfloat a);
mat4 T(GLfloat tx, GLfloat ty, GLfloat tz);
mat4 S(GLfloat sx, GLfloat sy, GLfloat sz);
mat4 Mult(mat4 a, mat4 b); // dest = a * b - rename to MultMat4 considered but I don't like to make the name of the most common operation longer
// but for symmetry, MultMat4 is made a synonym:
#define MultMat4 Mult
vec3 MultVec3(mat4 a, vec3 b); // result = a * b
vec4 MultVec4(mat4 a, vec4 b);
// Mat3 operations (new)
mat3 MultMat3(mat3 a, mat3 b); // m = a * b
vec3 MultMat3Vec3(mat3 a, vec3 b); // result = a * b
void OrthoNormalizeMatrix(mat4 *R);
mat4 transpose(mat4 m);
mat3 TransposeMat3(mat3 m);
mat4 ArbRotate(vec3 axis, GLfloat fi);
mat4 CrossMatrix(vec3 a);
mat4 MatrixAdd(mat4 a, mat4 b);
// Configure, i.e. if you want matrices to be column-wise
void SetTransposed(char t);
// GLU replacement functions
mat4 lookAtv(vec3 p, vec3 l, vec3 v);
|
49ca15c4 |
mat4 lookAt(GLfloat px, GLfloat py, GLfloat pz,
|
b23636c9 |
GLfloat lx, GLfloat ly, GLfloat lz,
GLfloat vx, GLfloat vy, GLfloat vz);
mat4 perspective(float fovyInDegrees, float aspectRatio,
float znear, float zfar);
mat4 frustum(float left, float right, float bottom, float top,
float znear, float zfar);
mat4 ortho(GLfloat left, GLfloat right, GLfloat bottom,
GLfloat top, GLfloat near, GLfloat far);
// For creating a normal matrix
mat3 InvertMat3(mat3 in);
mat3 InverseTranspose(mat4 in);
mat4 InvertMat4(mat4 a);
// Simple conversions
mat3 mat4tomat3(mat4 m);
mat4 mat3tomat4(mat3 m);
vec3 vec4tovec3(vec4 v);
vec4 vec3tovec4(vec3 v);
// Convenient printing calls
void printMat4(mat4 m);
void printVec3(vec3 in);
|
e797f203 |
/* Utility functions for easier uploads to shaders with error messages. */
// NEW as prototype 2022, added to VU 2023
|
49ca15c4 |
void uploadMat4ToShader(GLuint shader, const char *nameInShader, mat4 m);
void uploadUniformIntToShader(GLuint shader, const char *nameInShader, GLint i);
void uploadUniformFloatToShader(GLuint shader, const char *nameInShader, GLfloat f);
void uploadUniformFloatArrayToShader(GLuint shader, const char *nameInShader, GLfloat *f, int arrayLength);
void uploadUniformVec3ToShader(GLuint shader, const char *nameInShader, vec3 v);
void uploadUniformVec3ArrayToShader(GLuint shader, const char *nameInShader, vec3 *a, int arrayLength);
|
e797f203 |
void bindTextureToTextureUnit(GLuint tex, int unit);
|
b23636c9 |
#ifdef __cplusplus
// Convenient overloads for C++, closer to GLSL
mat3 inverse(mat3 m);
mat4 inverse(mat4 m);
mat3 transpose(mat3 m);
mat4 S(GLfloat s);
mat4 S(vec3 s);
mat4 lookAt(vec3 p, vec3 l, vec3 u);
#endif
//#ifdef __cplusplus
//}
//#endif
#ifdef __cplusplus
// Some C++ operator overloads
// Non-member C++ operators!
|
5973d707 |
// New version 2021-05-2x: Constructors for vec3 etc replaced in order to avoid
|
b23636c9 |
// problems with some C++ compilers.
// --- vec3 operations ---
inline
vec3 operator+(const vec3 &a, const vec3 &b) // vec3+vec3
{
return SetVector(a.x+b.x, a.y+b.y, a.z+b.z);
}
inline
vec3 operator-(const vec3 &a, const vec3 &b) // vec3-vec3
{
return SetVector(a.x-b.x, a.y-b.y, a.z-b.z);
}
inline
vec3 operator-(const vec3 &a)
{
return SetVector(-a.x, -a.y, -a.z);
}
// Questionable, not like GLSL
inline
float operator*(const vec3 &a, const vec3 &b) // vec3 dot vec3
{
return (a.x*b.x+ a.y*b.y+ a.z*b.z);
}
inline
vec3 operator*(const vec3 &b, double a) // vec3 * scalar
{
return SetVector(a*b.x, a*b.y, a*b.z);
}
inline
vec3 operator*(double a, const vec3 &b) // scalar * vec3
{
return SetVector(a*b.x, a*b.y, a*b.z);
}
inline
vec3 operator/(const vec3 &b, double a) // vec3 / scalar
{
return SetVector(b.x/a, b.y/a, b.z/a);
}
inline
void operator+=(vec3 &a, const vec3 &b) // vec3+=vec3
{
a = a + b;
}
inline
void operator-=(vec3 &a, const vec3 &b) // vec3-=vec3
{
a = a - b;
}
inline
void operator*=(vec3 &a, const float &b) // vec3*=scalar
{
a = a * b;
}
inline
void operator/=(vec3 &a, const float &b) // vec3/=scalar
{
a = a / b;
}
// --- vec4 operations ---
inline
vec4 operator+(const vec4 &a, const vec4 &b) // vec4+vec4
{
return SetVec4(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w);
}
inline
vec4 operator-(const vec4 &a, const vec4 &b) // vec4-vec4
{
return SetVec4(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w);
}
// Questionable, not like GLSL
inline
float operator*(const vec4 &a, const vec4 &b) // vec4 dot vec4
{
return (a.x*b.x+ a.y*b.y+ a.z*b.z+ a.w*b.w);
}
inline
vec4 operator*(const vec4 &b, double a) // vec4 * scalar
{
return SetVec4(a*b.x, a*b.y, a*b.z, a*b.w);
}
inline
vec4 operator*(double a, const vec4 &b) // scalar * vec4
{
return SetVec4(a*b.x, a*b.y, a*b.z, a*b.w);
}
inline
vec4 operator/(const vec4 &b, double a) // vec4 / scalar
{
return SetVec4(b.x/a, b.y/a, b.z/a, b.w/a);
}
inline
void operator+=(vec4 &a, const vec4 &b) // vec4+=vec4
{
a = a + b;
}
inline
void operator-=(vec4 &a, const vec4 &b) // vec4-=vec4
{
a = a - b;
}
inline
void operator*=(vec4 &a, const float &b) // vec4 *= scalar
{
a = a * b;
}
inline
void operator/=(vec4 &a, const float &b) // vec4 /= scalar
{
a = a / b;
}
// --- Matrix multiplication ---
// mat4 * mat4
inline
mat4 operator*(const mat4 &a, const mat4 &b)
{
return (Mult(a, b));
}
// mat3 * mat3
inline
mat3 operator*(const mat3 &a, const mat3 &b)
{
return (MultMat3(a, b));
}
// mat4 * vec3
inline
vec3 operator*(const mat4 &a, const vec3 &b)
{
return MultVec3(a, b); // result = a * b
}
// mat4 * vec4
inline
vec4 operator*(const mat4 &a, const vec4 &b)
{
return MultVec4(a, b); // result = a * b
}
// mat3 * vec3
inline
vec3 operator*(const mat3 &a, const vec3 &b)
{
return MultMat3Vec3(a, b); // result = a * b
}
#endif
|
49ca15c4 |
#endif
|
b23636c9 |
// ********** implementation section ************
#ifdef MAIN
|
49ca15c4 |
// Make sure this is included once
#ifndef VECTORUTILS4_MAIN
#define VECTORUTILS4_MAIN
|
b23636c9 |
// VS doesn't define NAN properly
#ifdef _WIN32
#ifndef NAN
static const unsigned long __nan[2] = {0xffffffff, 0x7fffffff};
#define NAN (*(const float *) __nan)
#endif
#endif
char transposed = 0;
vec3 SetVector(GLfloat x, GLfloat y, GLfloat z)
{
vec3 v;
|
49ca15c4 |
|
b23636c9 |
v.x = x;
v.y = y;
v.z = z;
return v;
}
// New better name
vec2 SetVec2(GLfloat x, GLfloat y)
{
vec2 v;
|
49ca15c4 |
|
b23636c9 |
v.x = x;
v.y = y;
return v;
}
vec3 SetVec3(GLfloat x, GLfloat y, GLfloat z)
{
vec3 v;
|
49ca15c4 |
|
b23636c9 |
v.x = x;
v.y = y;
v.z = z;
return v;
}
vec4 SetVec4(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
vec4 v;
|
49ca15c4 |
|
b23636c9 |
v.x = x;
v.y = y;
v.z = z;
v.w = w;
return v;
}
// Modern C doesn't need this, but Visual Studio insists on old-fashioned C and needs this.
mat3 SetMat3(GLfloat p0, GLfloat p1, GLfloat p2, GLfloat p3, GLfloat p4, GLfloat p5, GLfloat p6, GLfloat p7, GLfloat p8)
{
mat3 m;
m.m[0] = p0;
m.m[1] = p1;
m.m[2] = p2;
m.m[3] = p3;
m.m[4] = p4;
m.m[5] = p5;
m.m[6] = p6;
m.m[7] = p7;
m.m[8] = p8;
return m;
}
// Like above; Modern C doesn't need this, but Visual Studio insists on old-fashioned C and needs this.
mat4 SetMat4(GLfloat p0, GLfloat p1, GLfloat p2, GLfloat p3,
GLfloat p4, GLfloat p5, GLfloat p6, GLfloat p7,
|
49ca15c4 |
GLfloat p8, GLfloat p9, GLfloat p10, GLfloat p11,
|
b23636c9 |
GLfloat p12, GLfloat p13, GLfloat p14, GLfloat p15
)
{
mat4 m;
m.m[0] = p0;
m.m[1] = p1;
m.m[2] = p2;
m.m[3] = p3;
m.m[4] = p4;
m.m[5] = p5;
m.m[6] = p6;
m.m[7] = p7;
m.m[8] = p8;
m.m[9] = p9;
m.m[10] = p10;
m.m[11] = p11;
m.m[12] = p12;
m.m[13] = p13;
m.m[14] = p14;
m.m[15] = p15;
return m;
}
// vec3 operations
// vec4 operations can easily be added but I havn't seen much need for them.
// Some are defined as C++ operators though.
vec3 VectorSub(vec3 a, vec3 b)
{
vec3 result;
|
49ca15c4 |
|
b23636c9 |
result.x = a.x - b.x;
result.y = a.y - b.y;
result.z = a.z - b.z;
return result;
}
|
49ca15c4 |
|
b23636c9 |
vec3 VectorAdd(vec3 a, vec3 b)
{
vec3 result;
|
49ca15c4 |
|
b23636c9 |
result.x = a.x + b.x;
result.y = a.y + b.y;
result.z = a.z + b.z;
return result;
}
vec3 cross(vec3 a, vec3 b)
{
vec3 result;
result.x = a.y*b.z - a.z*b.y;
result.y = a.z*b.x - a.x*b.z;
result.z = a.x*b.y - a.y*b.x;
|
49ca15c4 |
|
b23636c9 |
return result;
}
GLfloat dot(vec3 a, vec3 b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
}
vec3 ScalarMult(vec3 a, GLfloat s)
{
vec3 result;
|
49ca15c4 |
|
b23636c9 |
result.x = a.x * s;
result.y = a.y * s;
result.z = a.z * s;
|
49ca15c4 |
|
b23636c9 |
return result;
}
GLfloat Norm(vec3 a)
{
GLfloat result;
result = (GLfloat)sqrt(a.x * a.x + a.y * a.y + a.z * a.z);
return result;
}
vec3 normalize(vec3 a)
{
GLfloat norm;
vec3 result;
norm = (GLfloat)sqrt(a.x * a.x + a.y * a.y + a.z * a.z);
result.x = a.x / norm;
result.y = a.y / norm;
result.z = a.z / norm;
return result;
}
vec3 CalcNormalVector(vec3 a, vec3 b, vec3 c)
{
vec3 n;
n = cross(VectorSub(a, b), VectorSub(a, c));
n = ScalarMult(n, 1/Norm(n));
|
49ca15c4 |
|
b23636c9 |
return n;
}
// Splits v into vn (parallell to n) and vp (perpendicular). Does not demand n to be normalized.
void SplitVector(vec3 v, vec3 n, vec3 *vn, vec3 *vp)
{
GLfloat nlen;
GLfloat nlen2;
nlen = DotProduct(v, n);
nlen2 = n.x*n.x+n.y*n.y+n.z*n.z; // Squared length
if (nlen2 == 0)
{
*vp = v;
*vn = SetVector(0, 0, 0);
}
else
{
*vn = ScalarMult(n, nlen/nlen2);
*vp = VectorSub(v, *vn);
}
}
// Matrix operations primarily on 4x4 matrixes!
// Row-wise by default but can be configured to column-wise (see SetTransposed)
mat4 IdentityMatrix()
{
mat4 m;
int i;
for (i = 0; i <= 15; i++)
m.m[i] = 0;
for (i = 0; i <= 3; i++)
m.m[i * 5] = 1; // 0,5,10,15
return m;
}
mat4 Rx(GLfloat a)
{
mat4 m;
m = IdentityMatrix();
m.m[5] = (GLfloat)cos(a);
if (transposed)
m.m[9] = (GLfloat)-sin(a);
else
m.m[9] = (GLfloat)sin(a);
m.m[6] = -m.m[9]; //sin(a);
m.m[10] = m.m[5]; //cos(a);
return m;
}
mat4 Ry(GLfloat a)
{
mat4 m;
m = IdentityMatrix();
m.m[0] = (GLfloat)cos(a);
if (transposed)
m.m[8] = (GLfloat)sin(a); // Was flipped
else
m.m[8] = (GLfloat)-sin(a);
m.m[2] = -m.m[8]; //sin(a);
m.m[10] = m.m[0]; //cos(a);
return m;
}
mat4 Rz(GLfloat a)
{
mat4 m;
m = IdentityMatrix();
m.m[0] = (GLfloat)cos(a);
if (transposed)
m.m[4] = (GLfloat)-sin(a);
else
m.m[4] = (GLfloat)sin(a);
m.m[1] = -m.m[4]; //sin(a);
m.m[5] = m.m[0]; //cos(a);
return m;
}
mat4 T(GLfloat tx, GLfloat ty, GLfloat tz)
{
mat4 m;
m = IdentityMatrix();
if (transposed)
{
m.m[12] = tx;
m.m[13] = ty;
m.m[14] = tz;
}
else
{
m.m[3] = tx;
m.m[7] = ty;
m.m[11] = tz;
}
return m;
}
mat4 S(GLfloat sx, GLfloat sy, GLfloat sz)
{
mat4 m;
m = IdentityMatrix();
m.m[0] = sx;
m.m[5] = sy;
m.m[10] = sz;
return m;
}
mat4 Mult(mat4 a, mat4 b) // m = a * b
{
mat4 m;
int x, y;
for (x = 0; x <= 3; x++)
for (y = 0; y <= 3; y++)
if (transposed)
m.m[x*4 + y] = a.m[y+4*0] * b.m[0+4*x] +
a.m[y+4*1] * b.m[1+4*x] +
a.m[y+4*2] * b.m[2+4*x] +
a.m[y+4*3] * b.m[3+4*x];
else
m.m[y*4 + x] = a.m[y*4+0] * b.m[0*4+x] +
a.m[y*4+1] * b.m[1*4+x] +
a.m[y*4+2] * b.m[2*4+x] +
a.m[y*4+3] * b.m[3*4+x];
return m;
}
// mat4 Mult(mat4 a, mat4 b) // m = a * b
// {
// mat4 m;
// if (transposed)
// {
// a = transpose(a);
// b = transpose(b);
// }
// int x, y;
// for (x = 0; x <= 3; x++)
// for (y = 0; y <= 3; y++)
// m.m[y*4 + x] = a.m[y*4+0] * b.m[0*4+x] +
// a.m[y*4+1] * b.m[1*4+x] +
// a.m[y*4+2] * b.m[2*4+x] +
// a.m[y*4+3] * b.m[3*4+x];
// if (transposed)
// m = transpose(m);
// return m;
// }
// Ej testad!
mat3 MultMat3(mat3 a, mat3 b) // m = a * b
{
mat3 m;
int x, y;
for (x = 0; x <= 2; x++)
for (y = 0; y <= 2; y++)
if (transposed)
m.m[x*3 + y] = a.m[y+3*0] * b.m[0+3*x] +
a.m[y+3*1] * b.m[1+3*x] +
a.m[y+3*2] * b.m[2+3*x];
else
m.m[y*3 + x] = a.m[y*3+0] * b.m[0*3+x] +
a.m[y*3+1] * b.m[1*3+x] +
a.m[y*3+2] * b.m[2*3+x];
return m;
}
// mat4 * vec3
// The missing homogenous coordinate is implicitly set to 1.
vec3 MultVec3(mat4 a, vec3 b) // result = a * b
{
vec3 r;
if (!transposed)
{
r.x = a.m[0]*b.x + a.m[1]*b.y + a.m[2]*b.z + a.m[3];
r.y = a.m[4]*b.x + a.m[5]*b.y + a.m[6]*b.z + a.m[7];
r.z = a.m[8]*b.x + a.m[9]*b.y + a.m[10]*b.z + a.m[11];
}
else
{
r.x = a.m[0]*b.x + a.m[4]*b.y + a.m[8]*b.z + a.m[12];
r.y = a.m[1]*b.x + a.m[5]*b.y + a.m[9]*b.z + a.m[13];
r.z = a.m[2]*b.x + a.m[6]*b.y + a.m[10]*b.z + a.m[14];
}
return r;
}
// mat3 * vec3
vec3 MultMat3Vec3(mat3 a, vec3 b) // result = a * b
{
vec3 r;
|
49ca15c4 |
|
b23636c9 |
if (!transposed)
{
r.x = a.m[0]*b.x + a.m[1]*b.y + a.m[2]*b.z;
r.y = a.m[3]*b.x + a.m[4]*b.y + a.m[5]*b.z;
r.z = a.m[6]*b.x + a.m[7]*b.y + a.m[8]*b.z;
}
else
{
r.x = a.m[0]*b.x + a.m[3]*b.y + a.m[6]*b.z;
r.y = a.m[1]*b.x + a.m[4]*b.y + a.m[7]*b.z;
r.z = a.m[2]*b.x + a.m[5]*b.y + a.m[8]*b.z;
}
|
49ca15c4 |
|
b23636c9 |
return r;
}
// mat4 * vec4
vec4 MultVec4(mat4 a, vec4 b) // result = a * b
{
vec4 r;
if (!transposed)
{
r.x = a.m[0]*b.x + a.m[1]*b.y + a.m[2]*b.z + a.m[3]*b.w;
r.y = a.m[4]*b.x + a.m[5]*b.y + a.m[6]*b.z + a.m[7]*b.w;
r.z = a.m[8]*b.x + a.m[9]*b.y + a.m[10]*b.z + a.m[11]*b.w;
r.w = a.m[12]*b.x + a.m[13]*b.y + a.m[14]*b.z + a.m[15]*b.w;
}
else
{
r.x = a.m[0]*b.x + a.m[4]*b.y + a.m[8]*b.z + a.m[12]*b.w;
r.y = a.m[1]*b.x + a.m[5]*b.y + a.m[9]*b.z + a.m[13]*b.w;
r.z = a.m[2]*b.x + a.m[6]*b.y + a.m[10]*b.z + a.m[14]*b.w;
r.w = a.m[3]*b.x + a.m[7]*b.y + a.m[11]*b.z + a.m[15]*b.w;
}
return r;
}
// Unnecessary
// Will probably be removed
// void CopyMatrix(GLfloat *src, GLfloat *dest)
// {
// int i;
// for (i = 0; i <= 15; i++)
// dest[i] = src[i];
// }
// Added for lab 3 (TSBK03)
// Orthonormalization of Matrix4D. Assumes rotation only, translation/projection ignored
void OrthoNormalizeMatrix(mat4 *R)
{
vec3 x, y, z;
if (transposed)
{
x = SetVector(R->m[0], R->m[1], R->m[2]);
y = SetVector(R->m[4], R->m[5], R->m[6]);
// SetVector(R[8], R[9], R[10], &z);
// Kryssa fram ur varandra
// Normera
z = CrossProduct(x, y);
z = Normalize(z);
x = Normalize(x);
y = CrossProduct(z, x);
R->m[0] = x.x;
R->m[1] = x.y;
R->m[2] = x.z;
R->m[4] = y.x;
R->m[5] = y.y;
R->m[6] = y.z;
R->m[8] = z.x;
R->m[9] = z.y;
R->m[10] = z.z;
R->m[3] = 0.0;
R->m[7] = 0.0;
R->m[11] = 0.0;
R->m[12] = 0.0;
R->m[13] = 0.0;
R->m[14] = 0.0;
R->m[15] = 1.0;
}
else
{
// NOT TESTED
x = SetVector(R->m[0], R->m[4], R->m[8]);
y = SetVector(R->m[1], R->m[5], R->m[9]);
// SetVector(R[2], R[6], R[10], &z);
// Kryssa fram ur varandra
// Normera
z = CrossProduct(x, y);
z = Normalize(z);
x = Normalize(x);
y = CrossProduct(z, x);
R->m[0] = x.x;
R->m[4] = x.y;
R->m[8] = x.z;
R->m[1] = y.x;
R->m[5] = y.y;
R->m[9] = y.z;
R->m[2] = z.x;
R->m[6] = z.y;
R->m[10] = z.z;
R->m[3] = 0.0;
R->m[7] = 0.0;
R->m[11] = 0.0;
R->m[12] = 0.0;
R->m[13] = 0.0;
R->m[14] = 0.0;
R->m[15] = 1.0;
}
}
// Commented out since I plan to remove it if I can't see a good reason to keep it.
// // Only transposes rotation part.
// mat4 TransposeRotation(mat4 m)
// {
// mat4 a;
|
49ca15c4 |
//
|
b23636c9 |
// a.m[0] = m.m[0]; a.m[4] = m.m[1]; a.m[8] = m.m[2]; a.m[12] = m.m[12];
// a.m[1] = m.m[4]; a.m[5] = m.m[5]; a.m[9] = m.m[6]; a.m[13] = m.m[13];
// a.m[2] = m.m[8]; a.m[6] = m.m[9]; a.m[10] = m.m[10]; a.m[14] = m.m[14];
// a.m[3] = m.m[3]; a.m[7] = m.m[7]; a.m[11] = m.m[11]; a.m[15] = m.m[15];
|
49ca15c4 |
//
|
b23636c9 |
// return a;
// }
// Complete transpose!
mat4 transpose(mat4 m)
{
mat4 a;
|
49ca15c4 |
|
b23636c9 |
a.m[0] = m.m[0]; a.m[4] = m.m[1]; a.m[8] = m.m[2]; a.m[12] = m.m[3];
a.m[1] = m.m[4]; a.m[5] = m.m[5]; a.m[9] = m.m[6]; a.m[13] = m.m[7];
a.m[2] = m.m[8]; a.m[6] = m.m[9]; a.m[10] = m.m[10]; a.m[14] = m.m[11];
a.m[3] = m.m[12]; a.m[7] = m.m[13]; a.m[11] = m.m[14]; a.m[15] = m.m[15];
|
49ca15c4 |
|
b23636c9 |
return a;
}
// Complete transpose!
mat3 TransposeMat3(mat3 m)
{
mat3 a;
|
49ca15c4 |
|
b23636c9 |
a.m[0] = m.m[0]; a.m[3] = m.m[1]; a.m[6] = m.m[2];
a.m[1] = m.m[3]; a.m[4] = m.m[4]; a.m[7] = m.m[5];
a.m[2] = m.m[6]; a.m[5] = m.m[7]; a.m[8] = m.m[8];
|
49ca15c4 |
|
b23636c9 |
return a;
}
// Rotation around arbitrary axis (rotation only)
mat4 ArbRotate(vec3 axis, GLfloat fi)
{
vec3 x, y, z;
mat4 R, Rt, Raxel, m;
// Check if parallel to Z
if (axis.x < 0.0000001) // Below some small value
if (axis.x > -0.0000001)
if (axis.y < 0.0000001)
if (axis.y > -0.0000001)
{
if (axis.z > 0)
{
m = Rz(fi);
return m;
}
else
{
m = Rz(-fi);
return m;
}
}
x = Normalize(axis);
z = SetVector(0,0,1); // Temp z
y = Normalize(CrossProduct(z, x)); // y' = z^ x x'
z = CrossProduct(x, y); // z' = x x y
if (transposed)
{
R.m[0] = x.x; R.m[4] = x.y; R.m[8] = x.z; R.m[12] = 0.0;
R.m[1] = y.x; R.m[5] = y.y; R.m[9] = y.z; R.m[13] = 0.0;
R.m[2] = z.x; R.m[6] = z.y; R.m[10] = z.z; R.m[14] = 0.0;
R.m[3] = 0.0; R.m[7] = 0.0; R.m[11] = 0.0; R.m[15] = 1.0;
}
else
{
R.m[0] = x.x; R.m[1] = x.y; R.m[2] = x.z; R.m[3] = 0.0;
R.m[4] = y.x; R.m[5] = y.y; R.m[6] = y.z; R.m[7] = 0.0;
R.m[8] = z.x; R.m[9] = z.y; R.m[10] = z.z; R.m[11] = 0.0;
R.m[12] = 0.0; R.m[13] = 0.0; R.m[14] = 0.0; R.m[15] = 1.0;
}
|
49ca15c4 |
Rt = Transpose(R); // Transpose = Invert -> felet ej i Transpose, och det �r en ortonormal matris
|
b23636c9 |
Raxel = Rx(fi); // Rotate around x axis
// m := Rt * Rx * R
m = Mult(Mult(Rt, Raxel), R);
|
49ca15c4 |
|
b23636c9 |
return m;
}
// Not tested much
mat4 CrossMatrix(vec3 a) // Matrix for cross product
{
mat4 m;
|
49ca15c4 |
|
b23636c9 |
if (transposed)
{
m.m[0] = 0; m.m[4] =-a.z; m.m[8] = a.y; m.m[12] = 0.0;
m.m[1] = a.z; m.m[5] = 0; m.m[9] =-a.x; m.m[13] = 0.0;
m.m[2] =-a.y; m.m[6] = a.x; m.m[10]= 0; m.m[14] = 0.0;
m.m[3] = 0.0; m.m[7] = 0.0; m.m[11]= 0.0; m.m[15] = 0.0;
// NOTE! 0.0 in the homogous coordinate. Thus, the matrix can
// not be generally used, but is fine for matrix differentials
}
else
{
m.m[0] = 0; m.m[1] =-a.z; m.m[2] = a.y; m.m[3] = 0.0;
m.m[4] = a.z; m.m[5] = 0; m.m[6] =-a.x; m.m[7] = 0.0;
m.m[8] =-a.y; m.m[9] = a.x; m.m[10]= 0; m.m[11] = 0.0;
m.m[12] = 0.0; m.m[13] = 0.0; m.m[14]= 0.0; m.m[15] = 0.0;
// NOTE! 0.0 in the homogous coordinate. Thus, the matrix can
// not be generally used, but is fine for matrix differentials
}
|
49ca15c4 |
|
b23636c9 |
return m;
}
mat4 MatrixAdd(mat4 a, mat4 b)
{
mat4 dest;
|
49ca15c4 |
|
b23636c9 |
int i;
for (i = 0; i < 16; i++)
dest.m[i] = a.m[i] + b.m[i];
|
49ca15c4 |
|
b23636c9 |
return dest;
}
// 0 = row-wise defined matrices
// 1 = column-wise
void SetTransposed(char t)
{
transposed = t;
}
// Build standard matrices
mat4 lookAtv(vec3 p, vec3 l, vec3 v)
{
vec3 n, u;
mat4 rot, trans;
n = Normalize(VectorSub(p, l));
u = Normalize(CrossProduct(v, n));
v = CrossProduct(n, u);
if (transposed)
rot = SetMat4(u.x, v.x, n.x, 0,
u.y, v.y, n.y, 0,
u.z, v.z, n.z, 0,
0, 0, 0, 1);
else
rot = SetMat4(u.x, u.y, u.z, 0,
v.x, v.y, v.z, 0,
n.x, n.y, n.z, 0,
0, 0, 0, 1);
trans = T(-p.x, -p.y, -p.z);
mat4 m = Mult(rot, trans);
return m;
}
|
49ca15c4 |
mat4 lookAt(GLfloat px, GLfloat py, GLfloat pz,
|
b23636c9 |
GLfloat lx, GLfloat ly, GLfloat lz,
GLfloat vx, GLfloat vy, GLfloat vz)
{
vec3 p, l, v;
|
49ca15c4 |
|
b23636c9 |
p = SetVector(px, py, pz);
l = SetVector(lx, ly, lz);
v = SetVector(vx, vy, vz);
|
49ca15c4 |
|
b23636c9 |
return lookAtv(p, l, v);
}
// From http://www.opengl.org/wiki/GluPerspective_code
// Changed names and parameter order to conform with VU style
// Rewritten 120913 because it was all wrong...
|
49ca15c4 |
// Creates a projection matrix like gluPerspective or glFrustum.
// Upload to your shader as usual.
// Error fixed 20220525: 180, not 360!
// Also made it conform to the reference manual.
|
b23636c9 |
mat4 perspective(float fovyInDegrees, float aspectRatio,
float znear, float zfar)
{
|
49ca15c4 |
float f = 1/tan(fovyInDegrees / 2);
|
b23636c9 |
mat4 m = SetMat4(f/aspectRatio, 0, 0, 0,
0, f, 0, 0,
0, 0, (zfar+znear)/(znear-zfar), 2*zfar*znear/(znear-zfar),
0, 0, -1, 0);
if (transposed)
m = transpose(m);
return m;
}
mat4 frustum(float left, float right, float bottom, float top,
float znear, float zfar)
{
float temp, temp2, temp3, temp4;
mat4 matrix;
|
49ca15c4 |
|
b23636c9 |
temp = 2.0f * znear;
temp2 = right - left;
temp3 = top - bottom;
temp4 = zfar - znear;
matrix.m[0] = temp / temp2; // 2*near/(right-left)
matrix.m[1] = 0.0;
matrix.m[2] = 0.0;
matrix.m[3] = 0.0;
matrix.m[4] = 0.0;
matrix.m[5] = temp / temp3; // 2*near/(top - bottom)
matrix.m[6] = 0.0;
matrix.m[7] = 0.0;
matrix.m[8] = (right + left) / temp2; // A = r+l / r-l
matrix.m[9] = (top + bottom) / temp3; // B = t+b / t-b
matrix.m[10] = (-zfar - znear) / temp4; // C = -(f+n) / f-n
matrix.m[11] = -1.0;
matrix.m[12] = 0.0;
matrix.m[13] = 0.0;
matrix.m[14] = (-temp * zfar) / temp4; // D = -2fn / f-n
matrix.m[15] = 0.0;
|
49ca15c4 |
|
b23636c9 |
if (!transposed)
matrix = Transpose(matrix);
|
49ca15c4 |
|
b23636c9 |
return matrix;
}
// Not tested!
mat4 ortho(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat near, GLfloat far)
{
float a = 2.0f / (right - left);
float b = 2.0f / (top - bottom);
float c = -2.0f / (far - near);
float tx = - (right + left)/(right - left);
float ty = - (top + bottom)/(top - bottom);
float tz = - (far + near)/(far - near);
mat4 o = SetMat4(
a, 0, 0, tx,
0, b, 0, ty,
0, 0, c, tz,
0, 0, 0, 1);
if (transposed)
o = Transpose(o);
return o;
}
// The code below is based on code from:
// http://www.dr-lex.be/random/matrix_inv.html
// Inverts mat3 (row-wise matrix)
// (For a more general inverse, try a gaussian elimination.)
mat3 InvertMat3(mat3 in)
{
float a11, a12, a13, a21, a22, a23, a31, a32, a33;
mat3 out, nanout;
float DET;
|
49ca15c4 |
|
b23636c9 |
// Copying to internal variables both clarify the code and
// buffers data so the output may be identical to the input!
a11 = in.m[0];
a12 = in.m[1];
a13 = in.m[2];
a21 = in.m[3];
a22 = in.m[4];
a23 = in.m[5];
a31 = in.m[6];
a32 = in.m[7];
a33 = in.m[8];
DET = a11*(a33*a22-a32*a23)-a21*(a33*a12-a32*a13)+a31*(a23*a12-a22*a13);
if (DET != 0)
{
out.m[0] = (a33*a22-a32*a23)/DET;
out.m[1] = -(a33*a12-a32*a13)/DET;
out.m[2] = (a23*a12-a22*a13)/DET;
out.m[3] = -(a33*a21-a31*a23)/DET;
out.m[4] = (a33*a11-a31*a13)/DET;
out.m[5] = -(a23*a11-a21*a13)/DET;
out.m[6] = (a32*a21-a31*a22)/DET;
out.m[7] = -(a32*a11-a31*a12)/DET;
out.m[8] = (a22*a11-a21*a12)/DET;
}
else
{
nanout = SetMat3(NAN, NAN, NAN,
NAN, NAN, NAN,
NAN, NAN, NAN);
out = nanout;
}
|
49ca15c4 |
|
b23636c9 |
return out;
}
// For making a normal matrix from a model-to-view matrix
// Takes a mat4 in, ignores 4th row/column (should just be translations),
// inverts as mat3 (row-wise matrix) and returns the transpose
mat3 InverseTranspose(mat4 in)
{
float a11, a12, a13, a21, a22, a23, a31, a32, a33;
mat3 out, nanout;
float DET;
|
49ca15c4 |
|
b23636c9 |
// Copying to internal variables
a11 = in.m[0];
a12 = in.m[1];
a13 = in.m[2];
a21 = in.m[4];
a22 = in.m[5];
a23 = in.m[6];
a31 = in.m[8];
a32 = in.m[9];
a33 = in.m[10];
DET = a11*(a33*a22-a32*a23)-a21*(a33*a12-a32*a13)+a31*(a23*a12-a22*a13);
if (DET != 0)
{
out.m[0] = (a33*a22-a32*a23)/DET;
out.m[3] = -(a33*a12-a32*a13)/DET;
out.m[6] = (a23*a12-a22*a13)/DET;
out.m[1] = -(a33*a21-a31*a23)/DET;
out.m[4] = (a33*a11-a31*a13)/DET;
out.m[7] = -(a23*a11-a21*a13)/DET;
out.m[2] = (a32*a21-a31*a22)/DET;
out.m[5] = -(a32*a11-a31*a12)/DET;
out.m[8] = (a22*a11-a21*a12)/DET;
}
else
{
nanout = SetMat3(NAN, NAN, NAN,
NAN, NAN, NAN,
NAN, NAN, NAN);
out = nanout;
}
return out;
}
// Simple conversions
mat3 mat4tomat3(mat4 m)
{
mat3 result;
|
49ca15c4 |
|
b23636c9 |
result.m[0] = m.m[0];
result.m[1] = m.m[1];
result.m[2] = m.m[2];
result.m[3] = m.m[4];
result.m[4] = m.m[5];
result.m[5] = m.m[6];
result.m[6] = m.m[8];
result.m[7] = m.m[9];
result.m[8] = m.m[10];
return result;
}
mat4 mat3tomat4(mat3 m)
{
mat4 result;
|
49ca15c4 |
|
b23636c9 |
result.m[0] = m.m[0];
result.m[1] = m.m[1];
result.m[2] = m.m[2];
result.m[3] = 0;
result.m[4] = m.m[3];
result.m[5] = m.m[4];
result.m[6] = m.m[5];
result.m[7] = 0;
result.m[8] = m.m[6];
result.m[9] = m.m[7];
result.m[10] = m.m[8];
result.m[11] = 0;
result.m[12] = 0;
result.m[13] = 0;
result.m[14] = 0;
result.m[15] = 1;
return result;
}
vec3 vec4tovec3(vec4 v)
{
vec3 result;
result.x = v.x;
result.y = v.y;
result.z = v.z;
return result;
}
vec4 vec3tovec4(vec3 v)
{
vec4 result;
result.x = v.x;
result.y = v.y;
result.z = v.z;
result.w = 1;
return result;
}
// Stol... I mean adapted from glMatrix (WebGL math unit). Almost no
// changes despite changing language! But I just might replace it with
// a gaussian elimination some time.
mat4 InvertMat4(mat4 a)
{
mat4 b;
|
49ca15c4 |
|
b23636c9 |
float c=a.m[0],d=a.m[1],e=a.m[2],g=a.m[3],
f=a.m[4],h=a.m[5],i=a.m[6],j=a.m[7],
k=a.m[8],l=a.m[9],o=a.m[10],m=a.m[11],
n=a.m[12],p=a.m[13],r=a.m[14],s=a.m[15],
A=c*h-d*f,
B=c*i-e*f,
t=c*j-g*f,
u=d*i-e*h,
v=d*j-g*h,
w=e*j-g*i,
x=k*p-l*n,
y=k*r-o*n,
z=k*s-m*n,
C=l*r-o*p,
D=l*s-m*p,
E=o*s-m*r,
q=1/(A*E-B*D+t*C+u*z-v*y+w*x);
b.m[0]=(h*E-i*D+j*C)*q;
b.m[1]=(-d*E+e*D-g*C)*q;
b.m[2]=(p*w-r*v+s*u)*q;
b.m[3]=(-l*w+o*v-m*u)*q;
b.m[4]=(-f*E+i*z-j*y)*q;
b.m[5]=(c*E-e*z+g*y)*q;
b.m[6]=(-n*w+r*t-s*B)*q;
b.m[7]=(k*w-o*t+m*B)*q;
b.m[8]=(f*D-h*z+j*x)*q;
b.m[9]=(-c*D+d*z-g*x)*q;
b.m[10]=(n*v-p*t+s*A)*q;
b.m[11]=(-k*v+l*t-m*A)*q;
b.m[12]=(-f*C+h*y-i*x)*q;
b.m[13]=(c*C-d*y+e*x)*q;
b.m[14]=(-n*u+p*B-r*A)*q;
b.m[15]=(k*u-l*B+o*A)*q;
return b;
};
// Two convenient printing functions suggested by Christian Luckey 2015.
// Added printMat3 2019.
void printMat4(mat4 m)
{
unsigned int i;
printf(" ---------------------------------------------------------------\n");
for (i = 0; i < 4; i++)
{
int n = i * 4;
printf("| %11.5f\t| %11.5f\t| %11.5f\t| %11.5f\t|\n",
m.m[n], m.m[n+1], m.m[n+2], m.m[n+3]);
}
printf(" ---------------------------------------------------------------\n");
}
void printMat3(mat3 m)
{
unsigned int i;
printf(" ---------------------------------------------------------------\n");
for (i = 0; i < 3; i++)
{
int n = i * 3;
printf("| %11.5f\t| %11.5f\t| %11.5f\t| \n",
m.m[n], m.m[n+1], m.m[n+2]);
}
printf(" ---------------------------------------------------------------\n");
}
|
49ca15c4 |
void printVec3(vec3 in)
|
b23636c9 |
{
printf("(%f, %f, %f)\n", in.x, in.y, in.z);
}
|
e797f203 |
/* Utility functions for easier uploads to shaders with error messages. */
// NEW as prototype 2022, added to VU 2023
#define NUM_ERRORS 8
static void ReportError(const char *caller, const char *name)
{
static unsigned int draw_error_counter = 0;
if(draw_error_counter < NUM_ERRORS)
{
fprintf(stderr, "%s warning: '%s' not found in shader!\n", caller, name);
draw_error_counter++;
}
else if(draw_error_counter == NUM_ERRORS)
{
fprintf(stderr, "%s: Number of errors bigger than %i. No more vill be printed.\n", caller, NUM_ERRORS);
draw_error_counter++;
}
}
|
49ca15c4 |
void uploadMat4ToShader(GLuint shader, const char *nameInShader, mat4 m)
|
e797f203 |
{
if (nameInShader == NULL) return;
glUseProgram(shader);
GLint loc = glGetUniformLocation(shader, nameInShader);
if (loc >= 0)
glUniformMatrix4fv(loc, 1, GL_TRUE, m.m);
else
ReportError("uploadMat4ToShader", nameInShader);
}
|
49ca15c4 |
void uploadUniformIntToShader(GLuint shader, const char *nameInShader, GLint i)
|
e797f203 |
{
if (nameInShader == NULL) return;
glUseProgram(shader);
GLint loc = glGetUniformLocation(shader, nameInShader);
if (loc >= 0)
glUniform1i(loc, i);
else
ReportError("uploadUniformIntToShader", nameInShader);
}
|
49ca15c4 |
void uploadUniformFloatToShader(GLuint shader, const char *nameInShader, GLfloat f)
|
e797f203 |
{
if (nameInShader == NULL) return;
glUseProgram(shader);
GLint loc = glGetUniformLocation(shader, nameInShader);
if (loc >= 0)
glUniform1f(loc, f);
else
ReportError("uploadUniformFloatToShader", nameInShader);
}
|
49ca15c4 |
void uploadUniformFloatArrayToShader(GLuint shader, const char *nameInShader, GLfloat *f, int arrayLength)
|
e797f203 |
{
if (nameInShader == NULL) return;
glUseProgram(shader);
GLint loc = glGetUniformLocation(shader, nameInShader);
if (loc >= 0)
glUniform1fv(loc, arrayLength, f);
else
ReportError("uploadUniformFloatToShader", nameInShader);
}
|
49ca15c4 |
void uploadUniformVec3ToShader(GLuint shader, const char *nameInShader, vec3 v)
|
e797f203 |
{
if (nameInShader == NULL) return;
glUseProgram(shader);
GLint loc = glGetUniformLocation(shader, nameInShader);
if (loc >= 0)
glUniform3f(loc, v.x, v.y, v.z);
else
ReportError("uploadUniformVec3ToShader", nameInShader);
}
|
49ca15c4 |
void uploadUniformVec3ArrayToShader(GLuint shader, const char *nameInShader, vec3 *a, int arrayLength)
|
e797f203 |
{
if (nameInShader == NULL) return;
glUseProgram(shader);
GLint loc = glGetUniformLocation(shader, nameInShader);
if (loc >= 0)
glUniform3fv(loc, arrayLength, (GLfloat *)a);
else
ReportError("uploadUniformVec3ArrayToShader", nameInShader);
}
void bindTextureToTextureUnit(GLuint tex, int unit)
{
glActiveTexture(GL_TEXTURE0 + unit);
glBindTexture(GL_TEXTURE_2D, tex);
}
|
b23636c9 |
#ifdef __cplusplus
mat3 inverse(mat3 m)
{
return InvertMat3(m);
}
mat4 inverse(mat4 m)
{
return InvertMat4(m);
}
mat3 transpose(mat3 m)
{
return TransposeMat3(m);
}
mat4 S(GLfloat s)
{
return S(s, s, s);
}
mat4 S(vec3 s)
{
return S(s.x, s.y, s.z);
}
mat4 lookAt(vec3 p, vec3 l, vec3 u)
{
return lookAtv(p, l, u);
}
|
5973d707 |
#ifdef __cplusplus
vec3::vec3(vec4 v) : x(v.x), y(v.y), z(v.z) {}
// Was wrong, fixed 2023-02-27
mat4::mat4(mat3 x)
{
m[0] = x.m[0]; m[1] = x.m[1]; m[2] = x.m[2]; m[3] = 0;
m[4] = x.m[3]; m[5] = x.m[4]; m[6] = x.m[5]; m[7] = 0;
m[8] = x.m[6]; m[9] = x.m[7]; m[10] = x.m[8]; m[11] = 0;
m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 1;
}
#endif
|
b23636c9 |
#endif
#endif
#endif
|