common/VectorUtils3.h
b23636c9
 // VectorUtils3 header
 // See source for more information
 
 #ifndef VECTORUTILS3
 #define VECTORUTILS3
 
 #ifdef __APPLE__
 	#define GL_SILENCE_DEPRECATION
 	#include <OpenGL/gl3.h>
 #else
 	#if defined(_WIN32)
 		#include "glew.h"
 	#endif
 	#include <GL/gl.h>
 #endif
 #include <math.h>
 #include <stdio.h>
 
 
 #ifndef M_PI
 #define M_PI           3.14159265358979323846
 #endif
 
 // Really old type names
 #define Vector3f Point3D
 #define Matrix3f Matrix3D
 #define Matrix4f Matrix4D
 
 // GLSL-style
 // These are already changed, here I define the intermediate type names that I use in some demos.
 #define Point3D vec3
 #define Matrix3D mat3
 #define Matrix4D mat4
 // These are not changed below yet
 #define dot DotProduct
 #define cross CrossProduct
 #define normalize Normalize
 // Furthermore, SplitVector should be revised to conform with reflect()
 
 
 // Note 210515: I have removed the constructors from my structs below in order to please
 // some compilers. They did work but the compilers were upset about C using these
 // without knowing about the constructors, while the C++ code happily used them.
 // However, we do not need them; you can initialize with SetVec* instead of
 // vec*() and it will work.
 
 	// vec3 is very useful
 	typedef struct vec3
 	{
 		GLfloat x, y, z;
 //		#ifdef __cplusplus
 //            vec3() {}
 //			vec3(GLfloat x2, GLfloat y2, GLfloat z2) : x(x2), y(y2), z(z2) {}
 
 ////			vec3(vec4 v) : x(v.x), y(v.y), z(v.z) {}
 //		#endif
 	} vec3, *vec3Ptr;
 	
 	// vec4 is not as useful. Can be a color with alpha, or a quaternion, but IMHO you
 	// rarely need homogenous coordinate vectors on the CPU.
 	typedef struct vec4
 	{
 		GLfloat x, y, z, w; // w or h
 //		#ifdef __cplusplus
 //            vec4() {}
 //			vec4(GLfloat x2, GLfloat y2, GLfloat z2, GLfloat w2) : x(x2), y(y2), z(z2), w(w2) {}
 //			vec4(GLfloat xyz, GLfloat w2) : x(xyz), y(xyz), z(xyz), w(w2) {}
 //			vec4(vec3 v, GLfloat w2) : x(v.x), y(v.y), z(v.z), w(w2) {}
 //			
 //			vec4(vec3 v) : x(v.x), y(v.y), z(v.z), w(1) {}
 //		#endif
 	} vec4, *vec4Ptr;
 
 // vec2 is mostly used for texture cordinates, so I havn't bothered defining any operations for it
 	typedef struct vec2
 	{
 		GLfloat x, y;
 //		#ifdef __cplusplus
 //            vec2() {}
 //			vec2(GLfloat x2, GLfloat y2) : x(x2), y(y2) {}
 //		#endif
 	} vec2, *vec2Ptr;
 	
 
 	typedef struct mat4
 	{
 		GLfloat m[16];
 	} mat4;
 	typedef struct mat3
 	{
 		GLfloat m[9];
 	} mat3;
 
 #ifdef __cplusplus
 extern "C" {
 #endif
 
 // New better name for SetVector and replacements for constructors
 	vec2 SetVec2(GLfloat x, GLfloat y);
 	vec3 SetVec3(GLfloat x, GLfloat y, GLfloat z);
 	vec4 SetVec4(GLfloat x, GLfloat y, GLfloat z, GLfloat w);
 
 //	void CopyVector(vec3 *v, vec3 *dest); // Will probably be removed
 	vec3 SetVector(GLfloat x, GLfloat y, GLfloat z);
 	mat3 SetMat3(GLfloat p0, GLfloat p1, GLfloat p2, GLfloat p3, GLfloat p4, GLfloat p5, GLfloat p6, GLfloat p7, GLfloat p8);
 	mat4 SetMat4(GLfloat p0, GLfloat p1, GLfloat p2, GLfloat p3,
 				GLfloat p4, GLfloat p5, GLfloat p6, GLfloat p7,
 				GLfloat p8, GLfloat p9, GLfloat p10, GLfloat p11, 
 				GLfloat p12, GLfloat p13, GLfloat p14, GLfloat p15
 				);
 // Basic vector operations on vec3's. (vec4 not included since I never need them.)
 	vec3 VectorSub(vec3 a, vec3 b);
 	vec3 VectorAdd(vec3 a, vec3 b);
 	vec3 CrossProduct(vec3 a, vec3 b);
 	GLfloat DotProduct(vec3 a, vec3 b);
 	vec3 ScalarMult(vec3 a, GLfloat s);
 	GLfloat Norm(vec3 a);
 	vec3 Normalize(vec3 a);
 	vec3 CalcNormalVector(vec3 a, vec3 b, vec3 c);
 	void SplitVector(vec3 v, vec3 n, vec3 *vn, vec3 *vp);
 
 // Matrix operations primarily on 4x4 matrixes!
 // Row-wise by default but can be configured to column-wise (see SetTransposed)
 
 	mat4 IdentityMatrix();
 	mat4 Rx(GLfloat a);
 	mat4 Ry(GLfloat a);
 	mat4 Rz(GLfloat a);
 	mat4 T(GLfloat tx, GLfloat ty, GLfloat tz);
 	mat4 S(GLfloat sx, GLfloat sy, GLfloat sz);
 	mat4 Mult(mat4 a, mat4 b); // dest = a * b - rename to MultMat4 considered but I don't like to make the name of the most common operation longer
 	// but for symmetry, MultMat4 is made a synonym:
 	#define MultMat4 Mult
 
 	// Was MatrixMultPoint3D
 	vec3 MultVec3(mat4 a, vec3 b); // result = a * b
 	vec4 MultVec4(mat4 a, vec4 b);
 //	void CopyMatrix(GLfloat *src, GLfloat *dest); // Will probably be removed
 
 // Mat3 operations (new)
 	mat3 MultMat3(mat3 a, mat3 b); // m = a * b
 	vec3 MultMat3Vec3(mat3 a, vec3 b); // result = a * b
 
 	void OrthoNormalizeMatrix(mat4 *R);
 	mat4 transpose(mat4 m);
 //	mat4 TransposeRotation(mat4 m); // Will probably be removed
 	mat3 TransposeMat3(mat3 m);
 	mat4 ArbRotate(vec3 axis, GLfloat fi);
 	mat4 CrossMatrix(vec3 a);
 	mat4 MatrixAdd(mat4 a, mat4 b);
 
 // Configure, i.e. if you want matrices to be column-wise
 	void SetTransposed(char t);
 
 // GLU replacement functions
 	mat4 lookAtv(vec3 p, vec3 l, vec3 v);
 	mat4 lookAt(GLfloat px, GLfloat py, GLfloat pz, 
 			GLfloat lx, GLfloat ly, GLfloat lz,
 			GLfloat vx, GLfloat vy, GLfloat vz);
 	mat4 perspective(float fovyInDegrees, float aspectRatio,
                       float znear, float zfar);
 	mat4 frustum(float left, float right, float bottom, float top,
                   float znear, float zfar);
 	mat4 ortho(GLfloat left, GLfloat right, GLfloat bottom,
 			GLfloat top, GLfloat near, GLfloat far);
 
 // For creating a normal matrix
 	mat3 InvertMat3(mat3 in);
 	mat3 InverseTranspose(mat4 in);
 	mat4 InvertMat4(mat4 a);
 
 // Simple conversions
 	mat3 mat4tomat3(mat4 m);
 	mat4 mat3tomat4(mat3 m);
 	vec3 vec4tovec3(vec4 v);
 	vec4 vec3tovec4(vec3 v);
 
 // Convenient printing calls
 	void printMat4(mat4 m);
 	void printVec3(vec3 in);
 
 /* Utility functions for easier uploads to shaders with error messages. */
 // NEW as prototype 2022, added to VU 2023
 	void uploadMat4ToShader(GLuint shader, char *nameInShader, mat4 m);
 	void uploadUniformIntToShader(GLuint shader, char *nameInShader, GLint i);
 	void uploadUniformFloatToShader(GLuint shader, char *nameInShader, GLfloat f);
 	void uploadUniformFloatArrayToShader(GLuint shader, char *nameInShader, GLfloat *f, int arrayLength);
 	void uploadUniformVec3ToShader(GLuint shader, char *nameInShader, vec3 v);
 	void uploadUniformVec3ArrayToShader(GLuint shader, char *nameInShader, vec3 *a, int arrayLength);
 	void bindTextureToTextureUnit(GLuint tex, int unit);
 
 
 
 #ifdef __cplusplus
 }
 #endif
 
 #ifdef __cplusplus
 // Some C++ operator overloads
 // Non-member C++ operators!
 // New version 2021-05-2x: Constructiors for vec3 etc replaced in order to avoid
 // problems with some C++ compilers.
 
 // --- vec3 operations ---
 inline
 vec3 operator+(const vec3 &a, const vec3 &b) // vec3+vec3
 {
 	return SetVector(a.x+b.x, a.y+b.y, a.z+b.z);
 }
 
 inline
 vec3 operator-(const vec3 &a, const vec3 &b) // vec3-vec3
 {
 	return SetVector(a.x-b.x, a.y-b.y, a.z-b.z);
 }
 
 inline
 vec3 operator-(const vec3 &a)
 {
 		return SetVector(-a.x, -a.y, -a.z);
 }
 
 	// Questionable, not like GLSL
 inline
 float operator*(const vec3 &a, const vec3 &b) // vec3 dot vec3
 {
 	return (a.x*b.x+ a.y*b.y+ a.z*b.z);
 }
 
 inline
 vec3 operator*(const vec3 &b, double a) // vec3 * scalar
 {
 	return SetVector(a*b.x, a*b.y, a*b.z);
 }
 
 inline
 vec3 operator*(double a, const vec3 &b) // scalar * vec3
 {
 	return SetVector(a*b.x, a*b.y, a*b.z);
 }
 
 inline
 vec3 operator/(const vec3 &b, double a) // vec3 / scalar
 {
 	return SetVector(b.x/a, b.y/a, b.z/a);
 }
 
 inline
 void operator+=(vec3 &a, const vec3 &b) // vec3+=vec3
 {
 	a = a + b;
 }
 
 inline
 void operator-=(vec3 &a, const vec3 &b) // vec3-=vec3
 {
 	a = a - b;
 }
 
 inline
 void operator*=(vec3 &a, const float &b) // vec3*=scalar
 {
 	a = a * b;
 }
 
 inline
 void operator/=(vec3 &a, const float &b) // vec3/=scalar
 {
 	a = a / b;
 }
 
 // --- vec4 operations ---
 
 inline
 vec4 operator+(const vec4 &a, const vec4 &b) // vec4+vec4
 {
 	return SetVec4(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w);
 }
 
 inline
 vec4 operator-(const vec4 &a, const vec4 &b) // vec4-vec4
 {
 	return SetVec4(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w);
 }
 
 	// Questionable, not like GLSL
 inline
 float operator*(const vec4 &a, const vec4 &b) // vec4 dot vec4
 {
 	return (a.x*b.x+ a.y*b.y+ a.z*b.z+ a.w*b.w);
 }
 
 inline
 vec4 operator*(const vec4 &b, double a) // vec4 * scalar
 {
 	return SetVec4(a*b.x, a*b.y, a*b.z, a*b.w);
 }
 
 inline
 vec4 operator*(double a, const vec4 &b) // scalar * vec4
 {
 	return SetVec4(a*b.x, a*b.y, a*b.z, a*b.w);
 }
 
 inline
 vec4 operator/(const vec4 &b, double a) // vec4 / scalar
 {
 	return SetVec4(b.x/a, b.y/a, b.z/a, b.w/a);
 }
 
 
 inline
 void operator+=(vec4 &a, const vec4 &b) // vec4+=vec4
 {
 	a = a + b;
 }
 
 inline
 void operator-=(vec4 &a, const vec4 &b) // vec4-=vec4
 {
 	a = a - b;
 }
 
 inline
 void operator*=(vec4 &a, const float &b) // vec4 *= scalar
 {
 	a = a * b;
 }
 
 inline
 void operator/=(vec4 &a, const float &b) // vec4 /= scalar
 {
 	a = a / b;
 }
 
 // --- Matrix multiplication ---
 
 // mat4 * mat4
 inline
 mat4 operator*(const mat4 &a, const mat4 &b)
 {
 	return (Mult(a, b));
 }
 
 // mat3 * mat3
 inline
 mat3 operator*(const mat3 &a, const mat3 &b)
 {
 	return (MultMat3(a, b));
 }
 
 // mat4 * vec3
 inline
 vec3 operator*(const mat4 &a, const vec3 &b)
 {
 	return MultVec3(a, b); // result = a * b
 }
 
 // mat4 * vec4
 inline
 vec4 operator*(const mat4 &a, const vec4 &b)
 {
 	return MultVec4(a, b); // result = a * b
 }
 
 // mat3 * vec3
 inline
 vec3 operator*(const mat3 &a, const vec3 &b)
 {
 	return MultMat3Vec3(a, b); // result = a * b
 }
 
 #endif
 
 
 #endif