... | ... |
@@ -2,11 +2,106 @@ |
2 | 2 |
|
3 | 3 |
A [GLSL][]/[OpenGL][] [\>=2.1][] [isometry][] matrix library. |
4 | 4 |
|
5 |
+If a `mat4` matrix represents an [isometry][], which in this case means that it |
|
6 |
+encodes only rotations and translations (no scaling or shearing, and a |
|
7 |
+projective `w` entry equal to `1`), it is easy and performant to extract those |
|
8 |
+rotations and translations, and to compute the [inverse][]. This library |
|
9 |
+provides functions to do so. |
|
10 |
+ |
|
5 | 11 |
[`gliso`]: https://git.rcrnstn.net/rcrnstn/gliso |
6 | 12 |
[GLSL]: https://en.wikipedia.org/wiki/OpenGL_Shading_Language |
7 | 13 |
[OpenGL]: https://en.wikipedia.org/wiki/OpenGL |
8 | 14 |
[\>=2.1]: https://en.wikipedia.org/wiki/OpenGL#Version_history |
9 | 15 |
[isometry]: https://en.wikipedia.org/wiki/Isometry |
16 |
+[inverse]: https://en.wikipedia.org/wiki/Invertible_matrix |
|
17 |
+ |
|
18 |
+## Requirements |
|
19 |
+ |
|
20 |
+Support for `#include` directives is required. This can be provided by e.g. the |
|
21 |
+standardized [`ARB_shading_language_include`][] extension or some third party |
|
22 |
+library. |
|
23 |
+ |
|
24 |
+[`ARB_shading_language_include`]: https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_shading_language_include.txt |
|
25 |
+ |
|
26 |
+## Usage |
|
27 |
+ |
|
28 |
+Link shader programs with the provided `iso.glsl`. |
|
29 |
+ |
|
30 |
+Include the provided `iso.h` from shaders. It declares the following functions: |
|
31 |
+ |
|
32 |
+- `mat{3,4} isorot{inv}{3,4}(mat4 iso)` |
|
33 |
+ |
|
34 |
+ Extract (inverse) rotation. |
|
35 |
+ |
|
36 |
+- `vec{3,4} isotrans{inv}{3,4}(mat4 iso)` |
|
37 |
+ |
|
38 |
+ Extract (inverse) translation. |
|
39 |
+ |
|
40 |
+ The `z` components of the `4` versions are set to `0`. |
|
41 |
+ |
|
42 |
+- `mat4 isoinv(mat4 iso)` |
|
43 |
+ |
|
44 |
+ Compute inverse. |
|
45 |
+ |
|
46 |
+## Theory |
|
47 |
+ |
|
48 |
+For simplicity, we use the same name for both the [projective][] and |
|
49 |
+[Euclidean][] versions of vectors and transformations below. |
|
50 |
+ |
|
51 |
+Assume $M$ is an isometry, |
|
52 |
+ |
|
53 |
+$$ |
|
54 |
+M v |
|
55 |
+= |
|
56 |
+\begin{pmatrix} |
|
57 |
+ r_{xx} & r_{yx} & r_{zx} & t_x \\ |
|
58 |
+ r_{xx} & r_{yx} & r_{zx} & t_y \\ |
|
59 |
+ r_{xx} & r_{yx} & r_{zx} & t_z \\ |
|
60 |
+ 0 & 0 & 0 & 1 \\ |
|
61 |
+\end{pmatrix} |
|
62 |
+\begin{pmatrix} |
|
63 |
+ v_x \\ |
|
64 |
+ v_y \\ |
|
65 |
+ v_z \\ |
|
66 |
+ 1 \\ |
|
67 |
+\end{pmatrix} |
|
68 |
+= |
|
69 |
+R v + t |
|
70 |
+$$ |
|
71 |
+ |
|
72 |
+It is trivial to extract the rotation $R$ and translation $t$ directly from the |
|
73 |
+components of $M$. |
|
74 |
+ |
|
75 |
+Since the rotation part $R$ is [orthonormal][], its inverse is its own |
|
76 |
+transpose. The inverse of the translation is its own negation. |
|
77 |
+ |
|
78 |
+$$ |
|
79 |
+\begin{aligned} |
|
80 |
+ R^{-1} &= R^T \\ |
|
81 |
+ t^{-1} &= -t \\ |
|
82 |
+\end{aligned} |
|
83 |
+$$ |
|
84 |
+ |
|
85 |
+Assuming the $3 \mathsf{x} 3$ sub-matrix of $M^{-1}$ is $R^{-1}$, finding the |
|
86 |
+full inverse is simply a matter of finding $M^{-1}$'s fourth column $m^{-1}$: |
|
87 |
+ |
|
88 |
+$$ |
|
89 |
+\begin{aligned} |
|
90 |
+ v |
|
91 |
+ &= M^{-1} M v \\ |
|
92 |
+ &= R^{-1} (R v + t) + m^{-1} \\ |
|
93 |
+ &= v + R^{-1} t + m^{-1} \\ |
|
94 |
+ &\iff \\ |
|
95 |
+ m^{-1} &= -R^{-1} t = R^{-1} t^{-1} \\ |
|
96 |
+\end{aligned} |
|
97 |
+$$ |
|
98 |
+ |
|
99 |
+Computing this is much faster than the built-in, general, [`inverse`][]. |
|
100 |
+ |
|
101 |
+[projective]: https://en.wikipedia.org/wiki/Homogeneous_coordinates |
|
102 |
+[Euclidean]: https://en.wikipedia.org/wiki/Cartesian_coordinates |
|
103 |
+[orthonormal]: https://en.wikipedia.org/wiki/Orthogonal_matrix |
|
104 |
+[`inverse`]: https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/inverse.xhtml |
|
10 | 105 |
|
11 | 106 |
## Build system |
12 | 107 |
|
13 | 108 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,47 @@ |
1 |
+#version 120 |
|
2 |
+ |
|
3 |
+ |
|
4 |
+mat3 isorot3 (mat4 iso) { return mat3(iso); } |
|
5 |
+vec3 isotrans3 (mat4 iso) { return iso[3].xyz; } |
|
6 |
+ |
|
7 |
+mat3 isorotinv3 (mat4 iso) { return transpose(isorot3(iso)); } |
|
8 |
+vec3 isotransinv3(mat4 iso) { return -isotrans3(iso); } |
|
9 |
+ |
|
10 |
+mat4 isorot4 (mat4 iso) { return mat4(isorot3 (iso)); } |
|
11 |
+mat4 isorotinv4 (mat4 iso) { return mat4(isorotinv3 (iso)); } |
|
12 |
+vec4 isotrans4 (mat4 iso) { return vec4(isotrans3 (iso), 0); } |
|
13 |
+vec4 isotransinv4(mat4 iso) { return vec4(isotransinv3(iso), 0); } |
|
14 |
+ |
|
15 |
+mat4 isoinv(mat4 iso) |
|
16 |
+{ |
|
17 |
+ // mat4 inv = isorotinv4(iso); |
|
18 |
+ // inv[3] += inv * isotransinv4(iso); |
|
19 |
+ mat3 rotinv = isorotinv3(iso); |
|
20 |
+ mat4 inv = mat4(rotinv); |
|
21 |
+ inv[3].xyz = rotinv * isotransinv3(iso); |
|
22 |
+ return inv; |
|
23 |
+} |
|
24 |
+ |
|
25 |
+ |
|
26 |
+#ifdef GLSLRUN |
|
27 |
+void main() |
|
28 |
+{ |
|
29 |
+ float phi = 1; |
|
30 |
+ mat4 iso = transpose(mat4( |
|
31 |
+ +cos(phi), -sin(phi), 0, 1, |
|
32 |
+ +sin(phi), +cos(phi), 0, 2, |
|
33 |
+ 0, 0, 1, 3, |
|
34 |
+ 0, 0, 0, 1 |
|
35 |
+ )); |
|
36 |
+ vec4 vec = vec4(4, 5, 6, 1); |
|
37 |
+ |
|
38 |
+ cout |
|
39 |
+ << iso * vec << endl |
|
40 |
+ << isorot4(iso) * vec + isotrans4(iso) << endl |
|
41 |
+ << isorot3(iso) * vec3(vec) + isotrans3(iso) << endl; |
|
42 |
+ |
|
43 |
+ cout |
|
44 |
+ << inverse(iso) << endl |
|
45 |
+ << isoinv (iso) << endl; |
|
46 |
+} |
|
47 |
+#endif // GLSLRUN |
0 | 48 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,13 @@ |
1 |
+mat3 isorot3(mat4 iso); |
|
2 |
+mat4 isorot4(mat4 iso); |
|
3 |
+ |
|
4 |
+mat3 isorotinv3(mat4 iso); |
|
5 |
+mat4 isorotinv4(mat4 iso); |
|
6 |
+ |
|
7 |
+vec3 isotrans3(mat4 iso); |
|
8 |
+vec4 isotrans4(mat4 iso); |
|
9 |
+ |
|
10 |
+vec3 isotransinv3(mat4 iso); |
|
11 |
+vec4 isotransinv4(mat4 iso); |
|
12 |
+ |
|
13 |
+mat4 isoinv(mat4 iso); |