| ... | ... |
@@ -2,11 +2,106 @@ |
| 2 | 2 |
|
| 3 | 3 |
A [GLSL][]/[OpenGL][] [\>=2.1][] [isometry][] matrix library. |
| 4 | 4 |
|
| 5 |
+If a `mat4` matrix represents an [isometry][], which in this case means that it |
|
| 6 |
+encodes only rotations and translations (no scaling or shearing, and a |
|
| 7 |
+projective `w` entry equal to `1`), it is easy and performant to extract those |
|
| 8 |
+rotations and translations, and to compute the [inverse][]. This library |
|
| 9 |
+provides functions to do so. |
|
| 10 |
+ |
|
| 5 | 11 |
[`gliso`]: https://git.rcrnstn.net/rcrnstn/gliso |
| 6 | 12 |
[GLSL]: https://en.wikipedia.org/wiki/OpenGL_Shading_Language |
| 7 | 13 |
[OpenGL]: https://en.wikipedia.org/wiki/OpenGL |
| 8 | 14 |
[\>=2.1]: https://en.wikipedia.org/wiki/OpenGL#Version_history |
| 9 | 15 |
[isometry]: https://en.wikipedia.org/wiki/Isometry |
| 16 |
+[inverse]: https://en.wikipedia.org/wiki/Invertible_matrix |
|
| 17 |
+ |
|
| 18 |
+## Requirements |
|
| 19 |
+ |
|
| 20 |
+Support for `#include` directives is required. This can be provided by e.g. the |
|
| 21 |
+standardized [`ARB_shading_language_include`][] extension or some third party |
|
| 22 |
+library. |
|
| 23 |
+ |
|
| 24 |
+[`ARB_shading_language_include`]: https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_shading_language_include.txt |
|
| 25 |
+ |
|
| 26 |
+## Usage |
|
| 27 |
+ |
|
| 28 |
+Link shader programs with the provided `iso.glsl`. |
|
| 29 |
+ |
|
| 30 |
+Include the provided `iso.h` from shaders. It declares the following functions: |
|
| 31 |
+ |
|
| 32 |
+- `mat{3,4} isorot{inv}{3,4}(mat4 iso)`
|
|
| 33 |
+ |
|
| 34 |
+ Extract (inverse) rotation. |
|
| 35 |
+ |
|
| 36 |
+- `vec{3,4} isotrans{inv}{3,4}(mat4 iso)`
|
|
| 37 |
+ |
|
| 38 |
+ Extract (inverse) translation. |
|
| 39 |
+ |
|
| 40 |
+ The `z` components of the `4` versions are set to `0`. |
|
| 41 |
+ |
|
| 42 |
+- `mat4 isoinv(mat4 iso)` |
|
| 43 |
+ |
|
| 44 |
+ Compute inverse. |
|
| 45 |
+ |
|
| 46 |
+## Theory |
|
| 47 |
+ |
|
| 48 |
+For simplicity, we use the same name for both the [projective][] and |
|
| 49 |
+[Euclidean][] versions of vectors and transformations below. |
|
| 50 |
+ |
|
| 51 |
+Assume $M$ is an isometry, |
|
| 52 |
+ |
|
| 53 |
+$$ |
|
| 54 |
+M v |
|
| 55 |
+= |
|
| 56 |
+\begin{pmatrix}
|
|
| 57 |
+ r_{xx} & r_{yx} & r_{zx} & t_x \\
|
|
| 58 |
+ r_{xx} & r_{yx} & r_{zx} & t_y \\
|
|
| 59 |
+ r_{xx} & r_{yx} & r_{zx} & t_z \\
|
|
| 60 |
+ 0 & 0 & 0 & 1 \\ |
|
| 61 |
+\end{pmatrix}
|
|
| 62 |
+\begin{pmatrix}
|
|
| 63 |
+ v_x \\ |
|
| 64 |
+ v_y \\ |
|
| 65 |
+ v_z \\ |
|
| 66 |
+ 1 \\ |
|
| 67 |
+\end{pmatrix}
|
|
| 68 |
+= |
|
| 69 |
+R v + t |
|
| 70 |
+$$ |
|
| 71 |
+ |
|
| 72 |
+It is trivial to extract the rotation $R$ and translation $t$ directly from the |
|
| 73 |
+components of $M$. |
|
| 74 |
+ |
|
| 75 |
+Since the rotation part $R$ is [orthonormal][], its inverse is its own |
|
| 76 |
+transpose. The inverse of the translation is its own negation. |
|
| 77 |
+ |
|
| 78 |
+$$ |
|
| 79 |
+\begin{aligned}
|
|
| 80 |
+ R^{-1} &= R^T \\
|
|
| 81 |
+ t^{-1} &= -t \\
|
|
| 82 |
+\end{aligned}
|
|
| 83 |
+$$ |
|
| 84 |
+ |
|
| 85 |
+Assuming the $3 \mathsf{x} 3$ sub-matrix of $M^{-1}$ is $R^{-1}$, finding the
|
|
| 86 |
+full inverse is simply a matter of finding $M^{-1}$'s fourth column $m^{-1}$:
|
|
| 87 |
+ |
|
| 88 |
+$$ |
|
| 89 |
+\begin{aligned}
|
|
| 90 |
+ v |
|
| 91 |
+ &= M^{-1} M v \\
|
|
| 92 |
+ &= R^{-1} (R v + t) + m^{-1} \\
|
|
| 93 |
+ &= v + R^{-1} t + m^{-1} \\
|
|
| 94 |
+ &\iff \\ |
|
| 95 |
+ m^{-1} &= -R^{-1} t = R^{-1} t^{-1} \\
|
|
| 96 |
+\end{aligned}
|
|
| 97 |
+$$ |
|
| 98 |
+ |
|
| 99 |
+Computing this is much faster than the built-in, general, [`inverse`][]. |
|
| 100 |
+ |
|
| 101 |
+[projective]: https://en.wikipedia.org/wiki/Homogeneous_coordinates |
|
| 102 |
+[Euclidean]: https://en.wikipedia.org/wiki/Cartesian_coordinates |
|
| 103 |
+[orthonormal]: https://en.wikipedia.org/wiki/Orthogonal_matrix |
|
| 104 |
+[`inverse`]: https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/inverse.xhtml |
|
| 10 | 105 |
|
| 11 | 106 |
## Build system |
| 12 | 107 |
|
| 13 | 108 |
new file mode 100644 |
| ... | ... |
@@ -0,0 +1,47 @@ |
| 1 |
+#version 120 |
|
| 2 |
+ |
|
| 3 |
+ |
|
| 4 |
+mat3 isorot3 (mat4 iso) { return mat3(iso); }
|
|
| 5 |
+vec3 isotrans3 (mat4 iso) { return iso[3].xyz; }
|
|
| 6 |
+ |
|
| 7 |
+mat3 isorotinv3 (mat4 iso) { return transpose(isorot3(iso)); }
|
|
| 8 |
+vec3 isotransinv3(mat4 iso) { return -isotrans3(iso); }
|
|
| 9 |
+ |
|
| 10 |
+mat4 isorot4 (mat4 iso) { return mat4(isorot3 (iso)); }
|
|
| 11 |
+mat4 isorotinv4 (mat4 iso) { return mat4(isorotinv3 (iso)); }
|
|
| 12 |
+vec4 isotrans4 (mat4 iso) { return vec4(isotrans3 (iso), 0); }
|
|
| 13 |
+vec4 isotransinv4(mat4 iso) { return vec4(isotransinv3(iso), 0); }
|
|
| 14 |
+ |
|
| 15 |
+mat4 isoinv(mat4 iso) |
|
| 16 |
+{
|
|
| 17 |
+ // mat4 inv = isorotinv4(iso); |
|
| 18 |
+ // inv[3] += inv * isotransinv4(iso); |
|
| 19 |
+ mat3 rotinv = isorotinv3(iso); |
|
| 20 |
+ mat4 inv = mat4(rotinv); |
|
| 21 |
+ inv[3].xyz = rotinv * isotransinv3(iso); |
|
| 22 |
+ return inv; |
|
| 23 |
+} |
|
| 24 |
+ |
|
| 25 |
+ |
|
| 26 |
+#ifdef GLSLRUN |
|
| 27 |
+void main() |
|
| 28 |
+{
|
|
| 29 |
+ float phi = 1; |
|
| 30 |
+ mat4 iso = transpose(mat4( |
|
| 31 |
+ +cos(phi), -sin(phi), 0, 1, |
|
| 32 |
+ +sin(phi), +cos(phi), 0, 2, |
|
| 33 |
+ 0, 0, 1, 3, |
|
| 34 |
+ 0, 0, 0, 1 |
|
| 35 |
+ )); |
|
| 36 |
+ vec4 vec = vec4(4, 5, 6, 1); |
|
| 37 |
+ |
|
| 38 |
+ cout |
|
| 39 |
+ << iso * vec << endl |
|
| 40 |
+ << isorot4(iso) * vec + isotrans4(iso) << endl |
|
| 41 |
+ << isorot3(iso) * vec3(vec) + isotrans3(iso) << endl; |
|
| 42 |
+ |
|
| 43 |
+ cout |
|
| 44 |
+ << inverse(iso) << endl |
|
| 45 |
+ << isoinv (iso) << endl; |
|
| 46 |
+} |
|
| 47 |
+#endif // GLSLRUN |
| 0 | 48 |
new file mode 100644 |
| ... | ... |
@@ -0,0 +1,13 @@ |
| 1 |
+mat3 isorot3(mat4 iso); |
|
| 2 |
+mat4 isorot4(mat4 iso); |
|
| 3 |
+ |
|
| 4 |
+mat3 isorotinv3(mat4 iso); |
|
| 5 |
+mat4 isorotinv4(mat4 iso); |
|
| 6 |
+ |
|
| 7 |
+vec3 isotrans3(mat4 iso); |
|
| 8 |
+vec4 isotrans4(mat4 iso); |
|
| 9 |
+ |
|
| 10 |
+vec3 isotransinv3(mat4 iso); |
|
| 11 |
+vec4 isotransinv4(mat4 iso); |
|
| 12 |
+ |
|
| 13 |
+mat4 isoinv(mat4 iso); |